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There continues to be a need for more effective analgesics. The α2-adrenoceptor 

(AR) agonist clonidine is an analgesic whose use is severely limited by undesirable side 

effects. meta-Chlorophenylguanidine (MD-354), an agent developed in our laboratory, 

selectively potentiates the antinociceptive effects of clonidine in a biphasic manner. 

Mechanistic studies suggest that both 5-HT3 receptor and α2-AR mechanisms are 

involved.   

To further evaluate mechanisms underlying the analgesia-potentiating effect of 

clonidine by MD-354, pharmacological studies using more established 5-HT3 receptor 

agonists: meta-chlorophenylbiguanide (mCPBG) and centrally-acting SR57227A, and 

non-selective α2-adrenoceptor ligand TDIQ, administered alone and in combination with 
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clonidine, were conducted in mouse antinociceptive assays.  None of the examined 

analogs produced an antinociceptive effect when administered alone. Nevertheless, 

mCPBG potentiated the antinociceptive actions of clonidine in a monophasic manner 

and the effect was antagonized by the 5-HT3 receptor antagonist tropisetron but not by 

tropisetron methiodide, suggesting that potentiation is, at least in part, due to a central 

5-HT3 receptor mechanism. SR57227A did not alter the antinociceptive actions of 

clonidine. TDIQ was found to potentiate the analgesic actions of clonidine in a 

synergistic manner (as determined by an isobolographic analysis) and the effect was 

blocked by α2-AR antagonists (BRL-44408, imiloxan, ARC-239; α2A-, α2B-, and α2C-AR 

antagonists, respectively). This supports the hypothesis that MD-354 could be 

potentiating the analgesic actions of clonidine via an α2-AR agonist mechanism.  

In order to explore the role of the ring nitrogen atoms and the chloro substituent 

of conformationally-constrained rotamers of MD-354, analogs of 2-amino-7-chloro-3,4-

dihydroquinazoline, with a varying number of nitrogen atoms in the ring were 

synthesized.  Preliminary binding affinity results indicated that the ring nitrogen atoms 

are essential for 5-HT3 receptor binding. 

In attempt to explain the varied binding and functional activity of MD-354 at α2-

ARs, 3D homology models of α2A-, α2B- and α2C-AR were generated and docking studies 

of the low-energy rotamers of MD-354  were conducted. 

The present studies support a role for the involvement of 5-HT3 receptors and α2-

ARs in antinociception. Analgesic adjuvants with a dual mechanism of action such as 

MD-354 might represent a promising avenue to pain treatment. 
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 I.  Introduction  

 

Cancer, which is one of the most deadly diseases among Americans, is 

commonly associated with various types of pain with various degrees of intensity and 

duration due to multiple sources.1,2  In general, cancer pain is due to (a) direct invasion 

of tumor into bones, soft tissue, nerves, tendons, or connective tissue, (b) metastases, 

and/or (c) cancer-related treatments such as surgery, radiation and chemotherapy.2   

The World Health Organization (WHO) developed a three-step analgesic ladder 

that communicated guidelines for cancer pain management.3  The first line of therapy 

for cancer pain therapy is administration of nonopioids such as nonsteroidal anti-

inflammatory drugs (NSAIDs) or acetaminophen.2-4  However, NSAIDs that 

nonspecifically inhibit cyclooxygenases type 1 and 2 can cause undesirable effects such 

as renal and gastrointestinal effects (e.g., ulceration and bleeding).5,6  Although NSAIDs 

that are selective for cyclooxygenase type 2 are devoid of these side effects, recent 

studies indicate that these agents increase the risk of stroke and heart attack.5,6  In the 

second line of therapy, WHO recommends adding opioids to the treatment.2-4  Although 

opioids have been found to be very effective analgesics, physicians and patients have 

concerns that physical dependence and tolerance will result from opioid treatments and, 

furthermore, adverse effects of such agents include respiratory depression, nausea and 

sedation.7,8   
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Adjuvant analgesics might be a solution for individual patients due to their 

particular symptoms of cancer-related pain and/or their sensitivity to certain adverse 

effects.7  For example, the α2-adrenoceptor (AR) agonist clonidine is used to relieve 

severe cancer pain.9   

Behavioral, neurochemical, and electrophysiological studies indicate an 

adrenoceptor role in antinociception via spinal administration of norepinephrine (NE; 1) 

or electrical stimulation of cerebral AR cell nuclei.10-15  The descending pathway is 

influenced by NE (1), which is receptor-dependent and affects the nociceptive 

threshold.16  Regarding the receptor subtypes of α2-ARs (α2A-, α2B- and α2C-ARs), there 

are knockout mouse studies as well as pharmacological studies such as systemic/spinal 

administration of selective α2A-AR agonists and antagonists that indicate an α2A-AR role 

in analgesia, but an antinociceptive role for α2B- and α2C-ARs is unclear.16-18   

Additionally, serotonin receptors seem to modulate mechanisms of descending 

inhibition and decending facilitation in the dorsal horn.16  Leading to both pronociceptive 

and antinociceptive actions, various studies such as electrical brain stimulation, 

morphine-induced antinociception, and direct administration of serotonin (5-HT) into the 

spinal cord suggest that descending serotonergic pathways exert opposing nociceptive 

effects (modulation of descending and facilitating inhibitory pathways).19,20  These 

varying effects produced by the endogenous ligand 5-HT could be due to the multiple 

subtypes of 5-HT receptors (i.e., it is the receptor, rather than the neurotransmitter, that 

is responsible for the excitatory or inhibitory action) and/or the localization of specific 5-

HT receptors. 
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With regard to the 5-HT3 receptor subtype, most of the current studies indicate an 

excitatory role in neuronal activity; specifically, phospholipase C activity is enhanced by 

activation of 5-HT3 receptors, which, in turn, influences neuronal activity.21-24  However, 

to date, the mechanism of pronociception is unclear, possibly due to incomplete 

characterization of 5-HT3 receptors (e.g., 5-HT3A vs. 5-HT3AB receptors), and more 

research is necessary to fully understand 5-HT3 receptors’ role in the descending 

control of pain,.   

In vivo pharmacological results are also, ambiguous; for example, the analgesic 

action of phenylbiguanide seems to be dependent on the nociceptive animal model, as 

it produces an antinociceptive effect in the rat hot-plate assay, whereas it shows saline-

like effects in the rat tail-flick assay.25  Furthermore, different analgesic effects observed 

in the tail-flick assay are seemingly due to species; 5-HT3 receptor agonists (e.g., 

phenylbiguanide and meta-chlorophenylbiguanide) produce saline-like effects in the rat 

tail-flick assay, but show antinociceptive effects in the mouse model.25-28  Although there 

are a few exceptions, in general, 5-HT3 receptor antagonists (e.g., tropisetron and 

zacopride) produce saline-like effects in antinociceptive animal models.29   

In view of the roles of α2-ARs and 5-HT3 receptors in pain, meta-

chlorophenylguanidine (MD-354), which was identified in our laboratory, was found to 

possess a rather selective binding profile.  MD-354 was shown to display high affinity to 

the ligand-gated ion channel 5-HT3 receptors (Ki = 35 nM), and to the low- and high-

affinity states of the G protein-coupled α2-adrenoceptors (Ki:  α2A-AR, 110 and 825 nM; 

α2B-AR, 220 and 25 nM; α2C-AR, 4,700 and 140 nM, respectively).30-33  In vitro functional 

assays ([35S]GTPγS assay) indicated that MD-354 behaves as a weak partial agonist at 
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α2A-ARs, but at high concentrations MD-354 nonselectively antagonizes the agonist 

effect of NE at all three receptor subtypes.31 

As MD-354 has an interesting binding profile with regards to antinociception, its 

functional activity in the mouse tail-flick and hot-plate assays have been investigated.  

However, in both assays, MD-354 failed to produce a statistically significant 

antinociceptive effect.33  Although MD-354 produced saline-like effects in the mouse tail-

flick and hot-plate assays, it was found to potentiate the antinociceptive effect of an 

“inactive” dose of clonidine (an α2-AR agonist) in the mouse tail-flick assay in a biphasic 

manner.33  That is, as MD-354 doses increased, the antinociceptive properties of 

clonidine were potentiated by MD-354 in a biphasic manner (dose-response curve 

displays two peaks at 1.0 and 10.0 mg/kg doses of MD-354).  Clonidine, one of the few 

non-opioid FDA-approved treatments for cancer pain, is a potent analgesic agent, but 

also produces undesirable side effects including sedation.  However, MD-354 displayed 

selective potentiation of clonidine; specifically, MD-354 potentiated the analgesic 

properties of clonidine in the mouse tail-flick assay, but did not potentiate the adverse 

sedative effect of clonidine in the mouse locomotor activity assay, which could have 

substantial clinical ramifications for the treatment of cancer-related pain.29,33 

The potentiating effect could be due to different mechanisms; for example, the 

low-dose potentiating effect might be caused by activation of 5-HT3 receptors, whereas 

the high-dose potentiating effect might be due to action at one or more of the α2-ARs. In 

fact, mechanistic studies suggest that the low-dose potentiation of clonidine by MD-354 

may be due, at least in part, to a 5-HT3 receptor agonist mechanism.34  However, when 

5-HT3 receptor antagonists (e.g., zacopride and tropisetron) were co-admininstered with 
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the clonidine/MD-354 (high dose) combination, neither potentiation nor attenuation of 

the antinociceptive effect occurred, which indicates that the high-dose potentaion is 

unlikely due to the 5-HT3 receptor character of MD-354.29  Due to MD-354’s binding 

affinity at α2-ARs, various α2-ARs antagonists with different binding selectivity were 

examined for their antinociceptive properties both alone and in combination with low- 

and high doses of MD-354 and clonidine.  However, difficulty arises in such mechanistic 

studies because of a lack of highly selective ligands at the three subtypes of α2-ARs.  

The mouse tail-flick assay results incorporating various α2-AR antagonists such as the 

non-selective α2-AR antagonist yohimbine, the moderately selective α2B- and α2A-AR 

antagonists imiloxan and BRL44408, respectively, in combination with clonidine suggest 

that α2B-AR antagonists can potentiate the action of clonidine.31,33  In other words, if 

MD-354 behaves as an α2B-AR antagonist, then it might be potentiating the 

antinociceptive effect of clonidine (either the low-dose or high-dose peak) via an α2B-AR 

antagonist mechanism of action.  Nevertheless, a possible α2A- and/or α2C-AR 

mechanism cannot be ruled out.  When the abovementioned α2-AR antagonists were 

co-administered with the clonidine/MD-354 combination (low dose), attenuation of the 

antinociceptive effect occurred.31  Because, by definition, antagonists block the effect of 

agonists, these observations suggest an α2-AR agonist mechanism in the actions 

associated with the potentiation of clonidine by a low dose of MD-354.  Therefore, from 

the abovementioned mechanistic studies, MD-354 seems to potentiate the 

antinociceptive actions of an inactive dose of clonidine, at least in part, via a 5-HT3 

receptor and an α2-AR mechanism.  
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Such results lead to the current project objectives.  The first main goal is to 

determine the mechanism of action of the analgesia-potentiating effect of clonidine by 

MD-354.  In the present investigation, this mechanism of action will be evaluated by 

studying the more established 5-HT3 receptor agonist meta-chlorophenylbiguanide, the 

known centrally-acting 5-HT3 recpeptor agonist SR57227A, and the non-selective α2-AR 

ligand TDIQ.  Second, an objective of this study is to explore the conformationally-

constrained rotamers of MD-354 as such conformational constraint might enlighten the 

manner in which MD-354 binds to 5-HT3 receptors.  Furthermore, the role of the ring 

nitrogen atoms and the chloro substituent in 5-HT3 receptor binding will be evaluated by 

synthesizing conformationally-constrained analogs of MD-354 (analogs which lack one 

or more nitrogen atoms or chloro substituents as compared to MD-354).  Also, as MD-

354 has high binding affinity at all three subtypes of α2-ARs, docking studies of MD-354 

at the low- and high-affinity states of α2A-, α2B- and α2C-AR homology models will be 

performed in order to better explain the binding affinity and functional activity of MD-

354. 
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II.  Background 

 

A.  Current therapy for cancer pain 

 

After heart disease, cancer is the most deadly disease among Americans.1  In 

2010, approximately 1.5 million new cancer cases were expected to be diagnosed in the 

United States alone and 0.5 million Americans were expected to die from cancer.1  

Many cancer patients deal with various types of pain throughout their treatment 

program.  Statistical data suggest a high incidence of cancer-related pain in patients 

specifically affecting 9 million people each year.35    

Cancer-related pain is multifaceted; there are multiple types of pain with various 

degrees of intensity and duration due to multiple sources.2  Cancer pain is a result of: 

(a) direct invasion of tumor into bones, soft tissue, nerves, tendons, or connective 

tissue, (b) metastases, and/or (c) cancer-related treatments including surgery, radiation 

and chemotherapy.2   

The three main physiological types of pain associated with cancer are 

nociceptive/somatic, visceral, and neuropathic pain, which are caused by the disease, 

itself and by side effects of various cancer treatments.2  Nociceptive pain (similar to 

somatic pain) is due to nociceptor activation, which results from tissue injury from 

surgery or from the tumor, itself.2  Cancer patients may also develop pain that originates 

from the organs within the abdomen, pelvis or thorax, which is comprehensively called 
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visceral pain.2  And, finally, neuropathic pain results from injury to the central or 

peripheral nervous system and, specifically in cancer patients, it arises due to cancer 

treatments such as surgery, radiation, and chemotherapy.2 

In 1986, the WHO developed a three-step analgesic ladder that described 

guidelines for the management of cancer pain.3  The general guidelines describe steps 

that progressively increase the strength of required analgesic agents.2-4  It suggests that 

cancer patients dealing with pain start with nonopioid therapies such as NSAIDs or 

acetaminophen (with or without adjuvant agents).2-4  If the pain persists or the intensity 

increases, physicians are recommended to administer combination products, which 

include weak opioid and nonopioid analgesics (e.g., acetaminophen or acetylsalicylic 

acid plus codeine, hydrocodone, or oxycodone).2-4  And, finally, if pain continues to 

persist, step 3 of the WHO cancer pain ladder proposes the use of stronger opioids 

such as morphine.2-4 

 

1.  Nonopioid therapies 

 

As suggested by the WHO guidelines for cancer pain therapy, the first line of 

therapy is administration of nonopioids.2-4  Traditional NSAIDs, selective 

cyclooxygenase type 2 (COX-2) inhibitors, and acetylsalicylic acid reduce inflammatory 

pain by blocking prostanoid production.36  NSAIDs that nonspecifically inhibit both types 

of cyclooxygenases (type 1 and 2) can cause renal and gastrointestinal side effects 

including ulceration and bleeding.5,6  Even though selective COX-2 inhibitors are devoid 

of this gastric side effect while maintaining analgesic properties, these agents have 
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been recently shown to increase the risk of stroke and heart attack when administered 

in high doses.5,6  Although NSAIDs have been found to effectively control cancer pain,7 

these side-effect concerns have resulted in product discontinuation or black box 

warnings.5,6  Acetaminophen, which displays analgesic and antipyretic properties, is 

also used for mild to moderate pain in cancer patients.2  The main concern with the 

administration of high doses of acetaminophen is an increased risk of hepatotoxicity.2 

 

2. Opioid therapies 

 

Based on the cancer pain step ladder developed by the WHO, various opioids 

are added to the treatment starting in the second step.2-4  Whether the agent is a full 

agonist, partial agonist, or mixed agonist-antagonist, most opioid drugs act at mu opioid 

receptors, but some are non-selective and, therefore, also bind to kappa and delta 

opioid receptors.2  In addition to continued use of acetaminophen or acetylsalicylic acid, 

mild opioids such as codeine, hydrocodone, or oxycodone are used in the second step 

of cancer pain treatment.2  If pain persists after step 2, stronger opioids (e.g., morphine, 

hydromorphone, fentanyl) replace the milder agents.2  Although these stronger opioid 

agents are typically very effective as analgesics, physicians and patients have concerns 

that opioids will result in physical dependence and tolerance.7,8  Additional adverse 

effects of opioids include respiratory depression, nausea, constipation, and sedation.7 
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3.  Adjuvant therapies 

 

Cancer pain is multifaceted; thus, it is difficult to control.  Adjuvant analgesics are 

drugs that were originally developed for a different indication; many of these agents 

have no effect when administered alone, but enhance the antinociceptive properties of a 

known analgesic.37  Adjuvant analgesics are a promising solution for individual patients 

due to their particular symptoms of cancer-related pain and/or their sensitivity to certain 

adverse effects.7  The main groups of adjuvant therapies for cancer pain are 

corticosteroids (e.g., dexamethasone), antidepressants (e.g., tricyclic antidepressants), 

and anticonvulsants (e.g., gabapentin).5-8  An additional adjuvant analgesic, clonidine, 

which is an α2-AR agonist, is used to relieve severe cancer pain especially in 

neuropathic pain.9 

 

4.  Pain pathways and pain control theories 

 

In the mid-17th century, the reflex theory was developed by René Descartes in 

an attempt to describe pain.38  The reflex theory stated that pain messages were sent 

from pain receptors in the skin to pain centers in the brain through a specific pain 

pathway.39  The reflex theory was used both for the pain pathway and the treatment of 

pain for more than 300 years.  It was thought that if the reflex theory was correct, then 

alleviation of pain could result from disconnection of the pain pathway.39  This theory 

was not refuted until 1965 with Melzack and Wall’s gate theory.40  The gate theory 

suggested that the dorsal horn of the spinal cord acts as a gate, which can open (or 
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close) to allow (or block) pain messages to travel to the brain and back to the site of 

pain.40 

Two pain pathways describe the chain of nerve fibers along which impulses can 

travel: (a)  afferent or ascending pathways transmit impulses from the periphery to the 

brain and (b) efferent or descending pathways transmit impulses from the brain to the 

spinal cord.16  In general, serotonergic and adrenergic neurons have been found to play 

a role in the descending pathway of pain perception in the raphe nuclei and locus 

coeruleus, respectively.41,42  These descending neurons transmit pain signals from the 

brain into the dorsal horn where they display inhibitory actions that can hinder the 

perception of pain stimuli.16 

 

B.  Adrenoceptors 

 

 1.  Classification 

 

 Norepinephrine (1; NE; noradrenaline) and epinephrine (2; EPI; adrenaline) 

(Figure 1) are endogenous neurotransmitters that produce various functional effects 

such as hypotension, sedation, and analgesia via ARs.43  In 1948, Alquist proposed two 

classes of ARs; α-ARs, which produce excitatory effects and β-ARs, which produce 

inhibitory effects.44  About 25 years later, α-ARs were divided into α1- and α2-AR 

subpopulations based on in vitro experiments that suggested α1-ARs were located post-

synaptically, whereas α2-ARs were presynaptic receptors.45  Although this theory was 
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later negated, the same nomenclature of α-ARs (α1- and α2-ARs) was subsequently 

proposed due to the relative affinities of various agonists and antagonists.46   

 

HO

HO

 NH2

OH

Norepinephrine (1)   

HO

HO

 H
N

OH

CH3

Epinephrine (2)  

Figure 1.  Structures of adrenergic neurotransmitters: norepinephrine (1) and 

epinephrine (2). 

 

The α1- and α2-ARs were later differentiated into six subpopulations (α1A-, α1B-, 

α1D-, α2A-, α2B-, and α2C-ARs) based on radioligand binding studies47,48 and molecular 

cloning studies.48-51  Similar studies discovered subpopulations of the β-ARs and 

eventually Bylund and co-workers54 identified a total of nine types of adrenoceptors by 

molecular cloning and proposed the following nomenclature: α1-, α2-, and β-ARs, that 

were subdivided into α1A-, α1B-, α1D-, α2A-, α2B-, α2C-, β1-, β2-, and β3-AR subclasses 

(Figure 2).  

 

 

Figure 2.  Classification of adrenoceptors.54 
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 There is a hole in the current adrenoceptor nomenclature because there is not an 

α1C-AR subtype.  This subtype was initially proposed but was later determined to be 

incorrectly identified.53 

 

 2.  α2-Adrenoceptors 

 

  a)  Structure and distribution 

 

 All three subtypes of α2-ARs are members of the G protein-coupled receptor 

(GPCR) family, which are integral membrane proteins structurally characterized by 7 α-

helical transmembrane-spanning domains (TM1-TM7) connected by three intracellular 

loops (IL1-IL3), three extracellular loops (EL1-EL3), an extracellular amino-terminal 

domain, and an intracellular carboxyl-terminal domain (Figures 3 and 4)53  Interaction of 

the receptor with an agonist supposedly induces a conformational change in the 

receptor which allows it to associate with a G protein and this, in turn, initiates a 

signaling cascade that produces an effect.43,53 
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Figure 3.  A generalized representation of the structure of a GPCR. 

 

 

Figure 4.  Extracellular view of the structure of GPCRs. 
 
 

In the past decade, the structure and function of GPCRs have been studied 

progressively due to an increase in the availability of crystal structure data of various 

receptors such as bovine rhodopsin, human β2-AR, turkey β1-AR, and human A2A 

adenosine receptors.55-59   There are two main mechanisms of GPCR activation, that 

incorporate highly conserved residues amongst most GPCRs.  The ionic lock is 
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represented by an interaction between an arginine (R) residue in the conserved TM3 

DRY motif and a negatively-charged residue (either D or E) in TM6 of bovine rhodopsin, 

that seems to hold the intracellular ends of TM3 and TM6 together to, thereby, restrain 

the receptor in an inactive state.55  The ionic lock has been associated with the 

constitutive activity of the receptor.60  Although this locking mechanism has been 

postulated for many GPCRs, there is evidence that it does not exist in all receptors 

including turkey β1-ARs, human β2-ARs, human A2A adenosine receptors, and human 

histamine H4 receptors.60 

The rotameric switch, which is thought to be associated with the global toggle 

switch, involves the highly conserved CWxP motif in TM6.61  Although current crystal 

structures do not show torsion angle changes of tryptophan (W), spectroscopic studies 

suggest that the conserved W of the CWxP motif exchanges between rotameric states 

(g+ and trans). This change in W’s rotameric state appears to be associated with a TM6 

conformational change during activation.62,63  The active conformation of W can interact 

with the aromatic ring of a highly conserved phenylalanine (F) moiety in TM5.  In 

addition, it has been recently found that site-directed mutations at the conserved W 

eliminates constitutive activity.64  Although there is no crystal structure of inactive or 

active conformations of the α2-ARs, there is a relatively high homology between the 

sequence of α2A/2B/2C-ARs and β2-ARs, as well as with other GPCRs, especially within 

conserved residues and/or motifs. 

 Although the receptor densities of the three subtypes of α2-ARs are dissimilar in 

humans, all three α2-adrenoceptors are generally found throughout peripheral tissues 

and in many neuronal populations within the central nervous system (CNS).65  Gene 
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expression studies in rat brain show a high density of mRNA encoding α2A-ARs in the 

locus coeruleus,66 as well as in the brain stem, cerebral cortex, dorsal horn, and 

hypothalamus.67  In addition to wide distribution throughout the CNS, α2A-AR mRNA has 

been found both pre- and post-synaptically in rat brain.68  Though the other two 

subtypes were found in lower expression levels compared to α2A-ARs throughout the 

brain, mRNA encoding α2C-ARs was found mainly in the rat hippocampus, olfactory 

system, dorsal horn, striatum, and cerebral cortex, while that for the α2B-ARs was mainly 

expressed in the thalamus.66 

 

  b)  Adrenoceptor agonists 

 

   1)  Pharmacology and clinical relevance 

 

 NE (1) and EPI (2), both of which are endogenous adrenoceptor agonists, bind to 

ARs and are believed to induce a conformational change in the receptor that leads to 

activation of heterotrimeric GTP-binding proteins (G proteins).  The specific intracellular 

signal is dependent on the type of G protein associated with the receptor.69  Three of 

the known signal transduction pathways of α2-AR agonists are: (a)  activation of Gi 

proteins, which leads to the inhibition of adenylyl cyclase, thereby inhibiting the 

production of cyclic adenosine monophosphate, (b) suppression of voltage-activated 

calcium channels, which decreases extracellular Ca2+ flow into target cells, via Go 

proteins, and (c) stimulation of K+ channels via Gi proteins. 69   
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 Studies with genetically modified α2-AR knockout mice have provided insight on 

subtype specific functions.17 For example, knockout mouse studies indicate that α2A-

ARs are mainly implicated in adrenoceptor functions such as hypotension, sedation, 

and analgesia, whereas α2B-ARs seem to play a role in NO-induced analgesia and salt-

induced hypertension.18,70  Studies from knockout mice suggest that CNS effects, such 

as locomotion and stress response, are due to the α2C-AR subtype.70,71 

  

   2)  Structure-affinity relationships (SAFIRs) 

 

 The two main classes of α2-AR agonists are phenylethylamines and 

imidazolines.70  The phenylethylamines, such as the endogenous agonists NE (1) and 

EPI (2; Figure 1), in general, contain an aromatic ring and a two-carbon chain with a β-

hydroxy group and a terminal amine.  R-Enantiomers are the eutomers and, therefore, 

have greater affinity at α2-ARs than agents with the S-configuration of the β-OH group.53  

Affinity at α2-ARs is maximal when the amine is N-methyl-substituted, but dramatically 

decreases as the size of the N-substituent increases.53  For example, EPI (2) has 

greater affinity than NE (1), but less than the β-AR-selective ligand isoproterenol (3; 

Figure 1), where the N-substituent is an isopropyl group (Table 1).53  A methyl 

substituent at the α-position (e.g., α-methylnorepinephrine, 4) is tolerated but not the 

ethyl homolog (e.g., ethylnorepinephrine), which has diminished α-AR binding, thereby 

producing a β-AR-selective ligand.53  The dihydroxy groups found in the endogenous 

agonists (or other catechol-containing compounds) provide binding activity at all α- and 
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β-AR subtypes, but if the p-OH group is removed β-AR affinity is abolished while α-AR 

affinity is only reduced (e.g., phenylephrine; 5; Figure 5).53  

 

 
Figure 5. Structures of representative adrenoceptor ligands from the phenylethylamine 

class: the β-AR-selective ligand isoproterenol (3), the α-AR-selective ligand 

methylnorepinephrine (4), the α-AR-selective ligand phenylephrine (5), and the α2-AR-

selective ligand TDIQ (6; Ki: α2A = 75, α2B = 97, α2C = 65 nM, which is nonselective 

amongst the three α2A-adrenoceptors).53 

 

Described structurally as a conformationally-restricted phenylalkylamine, TDIQ 

(6; 5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline; Figure 5), synthesized in our 

laboratory, is an agent that binds rather non-selectively at all three α2-AR subtypes (Ki: 

α2A = 75, α2B = 97, and α2C = 65 nM), but possesses little affinity for other 

neurotransmitter receptors.72  In fact, amongst 31 receptors and transporters examined, 

TDIQ (6) only had modest affinity at two receptors (Ki: dopamine D3 = 1,440 nM and 

serotonin 5-HT7 = 1,750 nM).72 

The second class of α2-AR agonists is the imidazolines, that includes the FDA-

approved antihypertensive and analgesic agent clonidine (7).73,74  Clonidine (7)  

behaves as a partial agonist at all three α2-AR subtypes, but also shows some activity at 

α1-ARs and imidazoline receptors.53,75  Extensive SAFIR studies indicate the following:  

(a) binding affinity at α2-ARs decreases when the o-position is modified: Cl > Br > CF3 

>> F, but is unaffected when modified to a methyl group, (b) clonidine-constrained 
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analogs indicate that the anti-periplanar orientation of the imidazoline/aromatic ring is 

the preferred conformation of these ligands, (c) the aniline NH is not required for binding 

affinity (e.g., oxymetazoline; 8), and (d)  the guanidine moiety could be changed by 

opening the imidazoline ring [e.g., guanabenz (9) and guanfacine (10)] without reducing 

activity, but changing the binding affinities (Table 2).53,70,76 

 

Table 1.  Affinity of norepinephrine (1) at α2A-, α2B-, and α2C-ARs; radioligand binding 

data ([3H]RX821002) are reported as Ki values (nM) at human cloned α2-ARs expressed 

in Chinese hamster ovary (CHO) cells.76 
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Table 2.  Binding profile of the imidazoline class of α2-AR agonists at α2A-, α2B-, and α2C-

ARs; radioligand binding ([3H]RX821002) are reported as Ki values (nM) at human 

cloned α2-ARs expressed in Chinese hamster ovary (CHO) cells.76 

 

 
 Ki (nM)  

Compound α2A-AR α2B-AR α2C-AR 
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Cl Cl
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 Guanabenz (9) and guanfacine (10) are FDA-approved agents for the treatment 

of hypertension and attention deficit hyperactivity disorder, respectively.77,78  Both of 

these agents display increased selectivity for α2-ARs over α1-ARs in comparison with 

clonidine (7), but they still cause adverse effects such as hypotension, bradycardia, and 

sedation.70 

  

  c)  Adrenoceptor antagonists 

  

   1)  Pharmacology and clinical relevance 

 

 By definition, α2-AR antagonists block the actions produced by α2-AR agonists, 

which, in general, include activation of Gi/o proteins.  Therefore, pharmacologically, α2-

AR antagonists have affinity but no efficacy at α2-ARs.  Antagonists can either bind at 

the orthosteric site (i.e., the binding site for the endogenous agonist – norepinephrine) 

or an allosteric site; these agents will directly or indirectly inhibit agonist binding, 

respectively. 

  

   2) Structure-affinity relationships (SAFIRs) 

 

 There is a wide variety of structural diversity amongst α2-AR antagonists, but 

these agents display little selectivity amongst the three α2-AR subtypes.  On one hand, 

these antagonists can be, structurally, much larger than the typical agonist, while, on 

the other hand, they can be analogous to the structure of an agonist with only a minor 
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chemical modification.70  Their lack of selectivity limits their ability to function as 

pharmacological tools, which is one of the reasons that the biological function of each 

subtype is unclear. 

 The most common non-selective α2-AR antagonist is yohimbine (11; Figure 6), 

an alkaloid derived from Pausinystlia yohimbe bark and Rauwolfia root.53  Yohimbine 

(11) was historically used as an aphrodisiac in Africa.79  It is now used for the treatment 

of erectile dysfunction, but its efficacy has not been adequately confirmed and, 

therefore, it is not commonly used.79  The main therapeutic uses of α2-AR antagonists 

revolve around the treatment of depression and diabetes.70,80  Yohimbine (11) has a 

high affinity for α2-ARs (Figure 6), but also has moderate affinity and antagonistic 

behavior at α1-ARs (Ki: α1A = 200, α1B = 158, and α1D = 158 nM), 5-HT1A (Ki = 50 nM), 5-

HT1D (Ki = 25 nM), and dopamine D2 (Ki = 398 nM) receptors.53,81   
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Figure 6.  Structures of α2-AR antagonists; α2A/2B/2C-AR binding affinity reported as Ki 

values (nM).31,53,70,81,82 

   

 Due to yohimbine’s (11) non-selective binding profile, other α2-AR antagonists 

have been developed as pharmacological tools such as imiloxan (12) and phentolamine 

(13; Figure 6).31,70,81  Recently, there have been some small improvements on receptor 

subtype selectivity.  For example, ARC-239 (14) displays 50-fold selectivity for α2B/2C- 

over α2A-AR, while BRL44408 (15) has selectivity for α2A-ARs amongst the three α2-AR 

subtypes (Figure 6).82 
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  d)  Binding mode of α2-adrenoceptor agonists 

 

 The Easson-Stedman hypothesis83,84 suggests a three-point interaction between 

adrenoceptors and catecholamines [e.g., NE (1) and EPI (2)]:  (a)  the protonated 

aliphatic amine, (b) the catecholic hydroxyl groups, and (c) the β-hydroxyl group.  The 

introduction of a chiral center at the β-position of these ligands extended the hypothesis 

to suggest the following relative potencies: R(-) > S(+) = desoxy, which was later 

verified by their binding affinities at all α-ARs.83,84   

 Molecular modeling studies, in some cases combined with site-directed 

mutagenesis data, support the Easson-Stedman hypothesis.  These studies predicted 

the following interactions between α2-ARs and catecholamines: (a) an ionic interaction 

between the highly conserved D3.32 aspartate moiety and the charged nitrogen atom of 

the catecholamine, (b) a hydrogen bond interaction between two serines (S5.42 and 

S5.46) and the meta- and para-hydroxyl groups of the catecholamine, respectively, and 

(c) a possible hydrogen bond interaction between either S2.61 or Y6.55 and the β-

hydroxyl group.70,85,86  These amino acid residues are common in all three subtypes of 

α2-ARs.   

The numbering of the amino acid residues is based on Ballesteros-Weinstein 

nomenclature.87 Each transmembrane amino acid is assigned two numbers separated 

by a period: the first number corresponds to the transmembrane number (TM1-7) and 

the second number corresponds to the distance from the most highly conserved residue 

in each transmembrane amongst all GPCRs.87 This highly conserved amino acid is 

arbitrarily given a value of 50 and any amino acid in the same transmembrane segment 
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that is closer to the carboxy-terminus is given a value >50, while those amino acids that 

are closer to the amino-terminus are given a value of <50.87 For example, the amino 

acid D3.32 is an aspartate residue located in TM3 and is 17 amino acids closer to the 

amino-terminus in comparison to the most highly conserved amino acid of all GPCRs in 

TM3 (3.50). 

 

  e)  Descending control of pain 

 

 Behavioral, neurochemical, and electrophysiological studies indicate an 

adrenoceptor role in antinociception via spinal administration of NE (1) or electrical 

stimulation of cerebral AR cell nuclei.10-15  There is overwhelming evidence of post-

synaptic mechanisms involved in the analgesic properties of NE (1) and only preliminary 

and less-compelling data to suggest a pre-synaptic mechanism.12,88  In addition, NE (1) 

affects the descending pathway associated with the serotonergic pathway from the 

nucleus raphae magnus to the dorsal horn.16 The nucleus raphae magnus contains a 

high concentration of pre- and post-synaptic, inhibitory α2-ARs.16   

 The descending pathway is influenced by NE (1), which is receptor-dependent 

and affects the nociceptive threshold.16 As for the α2A-AR subtype, density and 

distribution in the dorsal horn seem to correlate with its role in antinociception.67 An α2A-

AR role in analgesia is supported by systemic and spinal administration of selective α2A-

AR agonists and antagonists as well as by studies using α2A-AR knockout mice.16-18   

 There are some data that suggest an antinociceptive role for α2B- and α2C-ARs in 

the descending pathway, but these are unclear; lack of α2-AR subtype-selective agents 
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magnifies this ambiguous hypothesis. For example, α2B-AR knockout mice failed to 

exhibit antinociceptive effects to nitrous oxide (N2O), a known anesthetic and analgesic 

agent.89  Unfortunately, this is difficult to explain neurochemically because of the density 

and distribution of α2B-ARs (e.g., low concentration of α2B-ARs in the spinal cord).66  On 

the other hand, α2C-ARs seem to play a pro-nociceptive role in the dorsal horn via 

excitatory effects of the descending noradrenergic pathway, but just like the α2B-ARs, 

the α2C-AR subtype is poorly expressed in the human dorsal horn.12   

 

C.  Serotonin receptors 

 

 1.  Classification 

 

 Serotonin (5-hydroxytryptamine or 5-HT; 16, Figure 7) is a monoamine 

neurotransmitter that has been implicated in various disease states such as depression, 

anxiety, migraine, pain, and schizophrenia.90  Serotonin (16) binds to 5-HT receptors, 

which are all GPCRs except for the ligand-gated ion channel (LGIC) 5-HT3 receptors.90  

Theories have been proposed and modified throughout the long history since the 

discovery of serotonin receptors, which have, in turn, often enhanced 5-HT receptor 

nomenclature.91  
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N
H

NH2

HO

Serotonin (16)  

Figure 7.  Structure of the neurotransmitter serotonin (16).  

 
The criteria for the classification of 5-HT receptors began with functional data 

only, but over time it became more robust with additional experimental evidence 

including operational, structural, and transductional verification.92  For example, 5-HT1C 

receptors were later renamed 5-HT2C receptors due to their high sequence homology 

with other 5-HT2 receptors and their common phosphoinositol second messenger 

system as opposed to the adenylate cyclase second messenger system associated with 

5-HT1 receptors.90,93  The second messenger systems of the serotonin receptors 

include coupling to adenylate cylcase (AC) or phospholipase C (PLC); this is 

summarized in Table 3. 
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Table 3.  Summary of the second messenger systems involved in 5-HT receptor 

transduction.94,95 

 

Receptor subpopulation Transducer Effector 

5-HT1A Gi/Go AC inhibition 

5-HT1B Gi/Go AC inhibition 

5-HT1D Gi/Go AC inhibition 

5-ht1e Gi/Go AC inhibition 

5-HT1F Gi/Go AC inhibition 

5-HT2A Gi/Go, Gq/G11 AC inhibition, PLC stimulation 

5-HT2B Gq/G11 PLC stimulation 

5-HT2C Gi/Go, Gq/G11 AC inhibition, PLC stimulation 

5-HT3A N/A Cation channel 

5-HT3AB N/A Cation channel 

5-HT4 Gs AC stimulation 

5-ht5a Gi/Go, Gq/G11 AC inhibition, PLC stimulation 

5-HT6 Gs, Gq/G11 AC stimulation, PLC stimulation 

5-HT7 Gs AC stimulation 

 

 

The Nomenclature Committee of the International Union of Pharmacology 

currently classifies 5-HT receptors as:  5-HT1A, 5-HT1B, 5-HT1D, 5-ht1e, 5-HT1F, 5-HT2A, 5-

HT2B, 5-HT2C, 5-HT3A, 5-HT3AB, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7.
94,95 This receptor 

classification was based on the following criteria: operational or drug-binding 

characteristics, transductional or receptor-effector coupling, and structural or nucleotide/ 

amino acid sequence of the gene/receptor.90,93  Lower case receptor nomenclature 

(e.g., 5-ht1e and 5-ht5a) is used until all the receptor population criteria have been met.93 
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2.  5-HT3 receptors 

 

a)  Structure and distribution 

 

In contrast to the other G protein-coupled serotonin receptors, 5-HT3 receptors 

are LGIC receptors. These receptors are cation-selective and part of the Cys-loop 

superfamily of LGICs, which include similar proteins such as nicotinic acetylcholine and 

gamma-aminobutyric acid (GABAA/C) receptors.96 5-HT3 receptors are composed of 5 

subunits (pentamers) that surround a central core that forms an ion channel (Figure 

8).97 Each subunit is composed of a large extracellular amine terminus, four 

transmembrane-spanning domains (M1-M4) connected by intracellular and extracellular 

loops, and an extracellular carboxyl terminus (Figure 8a).97  The M2 transmembrane 

domain lines the ion channel (Figure 8b).97 

Five human 5-HT3 receptor subunits have been cloned and termed 5-HT3A, 5-

HT3B, 5-HT3C, 5-HT3D, and 5-HT3E subunits, but current data suggest that a 5-HT3A 

subunit is required for receptor function.96  5-HT3A, but not 5-HT3B, subunits have been 

shown to assemble into functional homopentamers via expression in Xenopus laevis 

oocytes.21,97-99 Co-expression of 5-HT3A and 5-HT3B subunits provides evidence for a 

functional heteromeric receptor97-100 and atomic-force microscopy studies indicate that 

the 5-HT3AB receptor has two 5-HT3A and three 5-HT3B subunits in the following 

subunit arrangement: B-B-A-B-A.101  To date, the role of the 5-HT3C, 5-HT3D, and 5-

HT3E subunits in receptor function is unclear. 
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Although the two known functional 5-HT3 receptors (5-HT3A and 5-HT3AB) seem 

to be very similar; there is a slight difference in ion selectivity. Both receptors have 

monovalent cation permeability (e.g., Na+ and K+) and negligible anion permeability, 

whereas the homomeric 5-HT3A receptors are also permeable to divalent cations such 

as Ca2+.97,102-104  This difference in cation selectivity seems to be due to differences in 

transmembrane M2 residues that line the channel.103   

(a) 

 
(b) 

 

Figure 8.  Representation of the structure of ligand-gated ion channels:  (a) receptor 

subunit containing four transmembrane spanning helices and (b) a pentameric structure 

of the receptor with M2 (shaded) lining the ion channel.97 
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Although 5-HT3 receptors (originally referred to as 5-HT-M receptors due to their 

sensitivity to morphine) were first found in the peripheral nervous system, their highest 

densities are in the CNS.105,106  Within the CNS, autoradiographical studies indicate 

highest levels in the brainstem including the area postrema, the dorsal motor nucleus of 

the vagus nerve, and the nucleus tractus solitarius and lower levels in the forebrain.107-

109  In addition to their various CNS distribution, 5-HT3 receptors can be found both pre- 

and post-synaptically.105 Presynaptic 5-HT3 receptors seem to modulate 

neurotransmitter (e.g., dopamine, GABA, and acetylcholine) release following Ca2+ 

influx.105 

 

b)  5-HT3 receptor agonists 

 

There are various types of chemical structures that bind to 5-HT3 receptors and 

that behave as partial or full agonists. The endogenous neurotransmitter, 5-HT (16), 

binds in a non-selective manner to human 5-HT3 receptors with modest affinity (Ki = 

1,000 nM) and, although its 2-methyl analog (i.e., 17, 2-methyl-5-HT) has slightly lower 

affinity (Ki = 1,300 nM) and reduced agonistic activity, it has increased selectivity for 5-

HT3 receptors (Figure 9).110,111  Due to its greater selectivity, 2-methyl-5-HT (17) was 

used in early 5-HT3 receptor research, but, unfortunately, more recently it has been 

found to also bind to 5-HT6 receptors.112  Another analog of 5-HT (16), N,N,N-trimethyl-

5-HT (18; 5-HTQ), was found to have greater selectivity and affinity at 5-HT3 receptors 

in comparison to 5-HT (16), but systemic administration of the quaternary amine 18 
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might not readily penetrate the blood-brain barrier (BBB) minimizing its central effect 

(Figure 9).111   

(a) 

N
H

NH2

HO

5-HT (16)

N
H

NH2

HO

2-Methyl-5-HT (17)

CH3

N
H

N

HO

N,N,N-Trimethyl-5-HT (18)

CH3

H3C CH3

Ki: 5-HT3 1,000 nM 1,300 nM 75 nM  

(b) 

N N

NH2

NH2

NH2

PBG (19)

N N

NH2

NH2

NH2

mCPBG (20)

N NH2

NH2

mCPG (MD-354, 21)

Cl Cl

Ki: 5-HT3 1,000 nM 17 nM 35 nM  

              

Figure 9.  Structures of 5-HT3 receptor agonists: (a) serotonin (16) and analogs (17, 18) 

and (b) arylbiguanides (19, 20) and an arylguanidine (21); 5-HT3 receptor binding 

affinity is reported as Ki values (nM).110,111,113 

 

 Structurally different than 5-HT (16), phenylbiguanide (19, PBG) has modest 5-

HT3 receptor affinity (Ki = 1,000 nM) and behaves as an agonist (Figure 9).111  Structural 

modifications of 19 have led to many agonists with greater affinity. For example, the 

meta-chloro analog (20, mCPBG) has 60-fold increased affinity at human 5-HT3 

receptors (Ki = 17 nM; Figure 9).111  Aryl substitution of 19 with chloro group(s) at 

various positions (e.g., 2-chloro-PBG and 3,4,5-trichloro-PBG) showed decreased Ki 

values to the low nanomolar range in comparison to PBG (19).32,114  Affinity was 
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retained when the biguanide moiety of mCPBG (20) was deconstructed to a guanidine 

as in meta-chlorophenylguanidine (21, mCPG, MD-354; Ki = 35 nM; Figure 9).111,113  

Just like the arylbiguanides, the arylguanidines have improved affinity with the addition 

of chloro groups to the phenyl ring.111,113   

SR57227A (22; 1-(6-chloropyrid-2-yl)-4-piperidinylamine; Figure 10) is a selective 

5-HT3 receptor agonist (Ki = 103 nM), which can penetrate the BBB.115  This agent (i.e., 

22) has been found to behave as an agonist both at central and peripheral 5-HT3 

receptors, which makes it a powerful pharmacological tool for detection of CNS effects 

mediated by 5-HT3 receptors.115 

 

NCl N

NH2

SR57227A (22)
Ki: 5-HT3 103 nM  

Figure 10.  Structure of the 5-HT3 receptor agonist SR57227A (22); 5-HT3 receptor 

binding affinity reported as a Ki value (nM).115 

 

 Although there are no current high-resolution structural data for the 5-HT3 

receptor, homology models have been generated based on the similar acetylcholine 

binding protein crystal structure.116-118  In addition to these 5-HT3 receptor homology 

models, site-directed mutagenesis studies indicate an agonist and, therefore, a 

competitive antagonist, extracellular binding site at the interface of two subunits of the 

5-HT3 receptor.119,120 
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c)  5-HT3 receptor antagonists 

 

Various 5-HT3 receptor antagonists such as ondansetron (23; trade name: 

Zofran; Figure 11) and granisetron (trade name: Kytril) are used clinically to treat 

chemotherapy-induced nausea and vomiting.121  Also, zacopride (24; Figure 11), a 5-

HT3 receptor antagonist and 5-HT4 receptor agonist, has been shown to be a useful 

antiemetic agent for cancer patients.121  In addition, preliminary results suggest that 5-

HT3 receptor antagonists influence the reward pathway (e.g., they reduce drug-induced 

self-administration of drugs such as ethanol or amphetamine), regulate food intake, 

produce anxiolytic effects, and attenuate chronic neuropathic pain.91,121  

Antagonists at 5-HT3 receptors were first discovered by modifying the chemical 

structure of cocaine, which was found to be a weak antagonist at 5-HT-M 

receptors.90,122  Modifications led to the first selective 5-HT3 receptor antagonists, 

bemesetron (MDL 72222) and tropisetron (25; Figure 11).90,123,124  In fact, the centrally 

acting 5-HT3 receptor antagonist, tropisetron (25; Figure 11), has become a valuable 

pharmacological tool because its quaternary amine analog, tropisetron methiodide, 

retains 5-HT3 receptor antagonist activity but only at peripheral receptors due to its 

inability to cross the BBB.113  Numerous similar compounds, which were classified as 

keto compounds, were synthesized. This class typically contains a carbonyl-containing 

linker between an aromatic/heteroaromatic ring and a basic amine.91,124  Most of these 

ligands are selective for 5-HT3 receptors, but some have affinity at 5-HT1P and/or 5-HT4 

receptors.91 
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Ondansetron (23)

Cl

H2N

O O

N
H

H3C

Zacopride (24)
0.1 nM

N
H

O
O

N

CH3

Tropisetron (25)
2.8 nM

N

Ki: 5-HT3 0.9 nM  

Figure 11.  Structures of some representative 5-HT3 receptor antagonists (23-25); 5-

HT3 receptor binding affinity reported as Ki values (nM).125,126 

 

In general, the basic aliphatic amine can tolerate small substituents; specifically, 

a methyl substituent is optimal as in tropisetron (25).91,124  Binding affinity at 5-HT3 

receptors seems to be favorable when the aromatic/heteroaromatic ring is a fused 6,5-

ring system (e.g., an indole in 23 and 25).91,124  Also, the carbonyl group is typically 

coplanar with the aromatic system.91,124  Extensive structure-affinity relationships of 5-

HT3 receptor antagonists have provided selective and high-affinity ligands.90,91 

 

  d)  Descending control of pain 

 

 Serotonin receptors seem to modulate mechanisms of descending inhibition and 

descending facilitation in the dorsal horn.16  Serotonergic input is involved with primary 

afferent fibers, projection neurons, and inhibitory interneurons and, therefore, 5-HT (16) 

is associated with conveying information from tissues and organs into the CNS and 

transmitting signals from the CNS to the effector cells.16   
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 It was first thought that 5-HT (16) reduced nociceptive transmission in the dorsal 

horn, but there is a plethora of contradicting studies.19  Various studies such as 

electrical brain stimulation, morphine-induced antinociception, and direct administration 

of 5-HT (16) into the spinal cord suggest that descending serotonergic pathways exert 

opposing nociceptive processing effects in the dorsal horn: modulation of descending 

and facilitating inhibitory pathways.19,20  This leads to both pronociceptive and 

antinociceptive actions; there are two possible reasons for these contradictory actions 

from one neurotransmitter. Varying effects could be due to: (a) the multiple subtypes of 

5-HT receptors (i.e., it is the receptor, rather than the neurotransmitter, that is 

responsible for the excitatory or inhibitory action) and/or (b) the localization of specific 5-

HT receptors. 

 Focusing on the 5-HT3 receptor subtype, most of the current data indicate an 

excitatory role in neuronal activity.  Upon activation of 5-HT3 receptors, phospholipase C 

activity is enhanced which, in turn, causes a cytosolic calcium influx leading to a 

cascade of intracellular changes and activity.21-24  In conjunction with behavioral studies 

suggesting a pronociceptive role of 5-HT3 receptors, it has been reported that they 

potentiate the release of the pronociceptive transmitter substance P in the dorsal 

horn.20,24  In addition to an unclear mechanism, there are some contradictory data 

suggesting a suppression in substance P release.16  Although, to date, it is clear that 

more research is necessary to fully understand 5-HT3 receptors’ role in the descending 

control of pain, it is possible that the ambiguous data are due to incomplete 

characterization of 5-HT3 receptors (e.g., 5-HT3A vs. 5-HT3AB receptors). 
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 Previously reported in vivo studies present contradictory analgesic effects of 5-

HT3 receptor agents in nociceptive animal studies (summarized in Table 4).  Similar to 

the pharmacological profile of various 5-HT3 receptor antagonists, 5-HT3 receptor 

agonists can display anti- or pronociceptive effects.  This might be due to the species, 

the animal model, or the route of drug administration.  For example, the analgesic action 

of PBG (19) seems to be dependent on the nociceptive animal model; PBG (19, i.t.) 

produces an antinociceptive effect in the rat hot-plate assay, whereas it shows saline-

like effects in the rat tail-flick assay.25  Likewise, the more potent 5-HT3 receptor agonist 

mCPBG (20; i.t.) displayed analgesic effects in the rat formalin and paw pressure assay, 

but no effect was observed in the rat tail-flick assay.26,127,128  Different analgesic effects 

observed in the tail-flick assay are seemingly due to species; 5-HT3 receptor agonists 

produce saline-like effects in the rat tail-flick assay, but show antinociceptive effects in 

the mouse model.25-28 
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Table 4.  Summary of the analgesic activity of 5-HT3 receptor ligands in nociceptive 
animal models (routes of administrations: i.t., intrathecal; i.p., intraperitoneal; s.c., 
subcutaneous; i.c.v, intracerebroventricular). 

Animal 

Model Agent 

Agonist or  

antagonist Species 

Admin 

route 

Analgesic 

activity Ref 

Tail-flick mCPBG agonist rat i.t. no 26 

 PBG agonist rat i.t. no 25 

 

2-Me-5-HT agonist mouse i.t. yes, blocked by 

tropisetron &  

zacopride 

28 

 

SR57227A agonist mouse i.p. yes, blocked by 

bemesetron &  

zacopride 

27 

 

tropisetron antagonist rat 

rat 

mouse 

i.t. 

s.c. 

s.c. 

no 

no 

no 

26 

129 

29 

 

zacopride antagonist rat 

mouse 

mouse 

i.t. 

i.p. 

s.c. 

no 

no 

no 

30 

29 

29 

 

ondansetron antagonist mouse 

mouse 

s.c. 

s.c. 

no 29 

Hot-plate PBG agonist rat i.t. yes 25 

 2-Me-5-HT agonist rat i.t. yes 130 

 tropisetron antagonist rat s.c. no 129 

 ondansetron antagonist rat i.t. no 129 

Paw 

pressure 

5-HT agonist rat i.t. yes, blocked by 

granisetron &  

tropisetron 

127, 

128 

 2-Me-5-HT agonist rat 

rat 

i.t. 

i.c.v. 

no 

no 

128 

128 

 

mCPBG agonist rat i.t. yes, blocked by 

tropisetron & 

granisetron 

127, 

128, 

131 

   rat i.p. yes 132 

 tropisetron antagonist rat i.t. no 127,128, 

131  ondansetron antagonist rat i.p. yes 132 

   rat i.t. no 131 

 granisetron antagonist rat i.t. no 128,131 

Formalin mCPBG agonist rat i.t. yes 133 

 tropisetron antagonist rat s.c. yes 129 

 ondansetron antagonist rat i.t. no 129,133 
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In general, administration of 5-HT3 receptor antagonists produces saline-like 

effects in antinociceptive animal models, but there are some exceptions.  For example, 

s.c. administration of tropisetron (25) showed analgesic actions in the rat formalin 

test.129  Also, ondansetron (23) showed antinociceptive effects upon i.p. administration 

in a mechanical nociceptive animal model (rat paw pressure assay).132  Thus far, these 

contradictory observations are inadequately understood. 

 

D.  MD-354 (21) 

 

 1.  Binding affinity 

  

 The 5-HT3 receptor ligand MD-354 (21) was identified in our laboratory in 1996.32 

Radioligand binding assays at 30 different aminergic receptors indicated that MD-354 

(21) possesses a rather selective binding profile.  The receptors for which MD-354 (21) 

displays high affinity include the ligand-gated ion channel serotonin 5-HT3 receptors 

(Table 5).32  Subsequently, MD-354 (21) was found to bind to the low- and high-affinity 

states of the G protein-coupled α2-adrenoceptors as determined using the antagonist 

radioligand ([ethyl-3H]RS-79948-197) and the agonist radioligand ([125I]clonidine), 

respectively (Table 5).31,33  It is thought that radiolabeled agonists label the high-affinity 

state of the receptor, whereas radiolabeled antagonists label both high- and low-affinity 

states of the receptor.134 
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Table 5.  MD-354 (21) binding profile.31-33 

 

Receptor population Ki (nM) 

5-HT3 35a 

α2A-ARs 110b, 825c 

α2B-ARs 220b, 25c 

α2C-ARs 4,700b, 140c 

 

Radioligands used in binding assays: a[3H]GR65630 (a 5-HT3 receptor antagonist), 
b[ethyl-3H]RS-79948-197 (an adrenoceptor antagonist) and c[125I]clonidine (an 

adrenoceptor agonist). 

 

 

Additionally, MD-354 (21) has very modest affinity for 5-HT1A (Ki = 4,100 nM), 5-

HT5A (Ki = 4,160 nM), and 5-HT7 (Ki = 680 nM) receptors as well as α1A- (Ki = 300 nM) 

and α1B- (Ki = 1,900 nM) ARs, but no affinity (i.e., Ki > 10,000 nM) at the remaining 

serotonin receptor and adrenoceptor subtypes, dopamine D1-D5 receptors, mu and 

kappa opioid receptors, m1-m5 muscarinic receptors, rat H1 histamine receptors, 

phencyclidine receptors, NMDA receptors, benzodiazepine receptors, and the aminergic 

transporters (serotonin, dopamine, and norepinephrine).33 

 

2.  In vitro functional activity 

 

  Functional [35S]GTPγS assays were performed with two types of buffer 

conditions:  low and high concentrations of NaCl.  Experimental conditions with low salt 

concentrations have been found optimal for the detection of partial agonist activity.134  

As concluded by these assays, MD-354 (21) behaves as a weak partial agonist at α2A-
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ARs in low and high salt conditions (EC50 = 0.83 and 1.4 μM, respectively).31 At high 

concentrations (>100 μM), MD-354 (21) nonselectively antagonized the agonist effect of 

norepinephrine (1; NE) at all three receptor subtypes.31   

 

3.  In vivo functional activity 

 

 a)  MD-354 (21) administered alone 

 

Numerous in vivo pharmacological studies involving 5-HT3 receptor agents, such 

as MD-354 (21), have been reported.  Initial MD-354 (21) functional studies included the 

rat von Bezold-Jarisch assay, which examined reflex bradycardia, and the rabbit 

bladder assay.32  Although MD-354 (21) behaved as an agonist in both of these assays, 

it showed reduced potency in comparison to the biguanide analog mCPBG (20).32  Low 

doses (e.g., 10 mg/kg, i.p.) of MD-354 (21) also were shown to reduce cisplatin-induced 

emesis, whereas higher doses (40 mg/kg, i.p.) elicited an emetic effect in the shrew.113 

MD-354 (21) has been used as a training drug in drug discrimination studies. The 

discriminative stimulus effects of MD-354 (21) in rats (training dose = 2.0 mg/kg) seems 

to be a central 5-HT3 receptor-mediated effect because it is usually only centrally-acting 

agents that serve as discriminative stimuli, and because the stimulus effects of MD-354 

(21) were antagonized by the 5-HT3 receptor antagonists zacopride (24) and tropisetron 

(25), but not by tropisetron methiodide.113,135 This quaternary analog (tropisetron 

methiodide) retains the antagonist properties of tropisetron (25) but is not able to readily 

cross the BBB.113,135 
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Since 5-HT3 receptors and α2-ARs both have been implicated in pain, MD-354 

(21) was examined in mouse tail-flick and hot-plate assays. In the mouse tail-flick 

assay, MD-354 (21; doses: 1.0-30 mg/kg, s.c.) showed saline-like effects using various 

pretreatment times.33  Similarly, MD-354 (21) failed to produce a statistically significant 

antinociceptive effect (in comparison to saline control) at various doses (3.0-30 mg/kg, 

s.c.) and pretreatment times in the mouse hot-plate assay.33  And, finally, the 

spontaneous activity of MD-354 (21) was examined and MD-354 (21) was found to 

produce saline-like effects in mice indicating it is neither a CNS stimulant nor a CNS 

depressant.31,33,135  Another possible conclusion is that MD-354 (21) is unable to 

penetrate the BBB to produce its effect(s). 

  

b) MD-354 (21) administered in combination with clonidine (7) 

 

Although MD-354 (21; 1.0-30 mg/kg) produced no analgesic effects when 

administered alone, it potentiated the antinociceptive effect of an “inactive” dose of 

clonidine (7) in the mouse tail-flick assay [MD-354 (21) doses 1.0-30 mg/kg], but didn’t 

significantly potentiate or attenuate the effect of clonidine (7) in the mouse hot-plate 

assay [MD-354 (21) doses 10-30 mg/kg].33  Moreover, in the mouse tail-flick assay the 

analgesic effect of the MD-354/clonidine (21/7) combination appeared to be biphasic 

(Figure 12).34  The antinociceptive properties of clonidine (7) were potentiated by MD-

354 (21) as depicted by both peaks [Peaks A and B at 1.0 and 10 mg/kg doses of MD-

354 (21), respectively] of the biphasic dose-response curve (Figure 12). The 

potentiating effect of MD-354 (21) in combination with clonidine (7) illustrated by Peaks 
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A and B could be due to different mechanisms such as: (a) 5-HT3 receptor agonism or 

antagonism, (b) action at one or more α2-ARs (α2A-, α2B-, and/or α2C-ARs), or (c) action 

at neither 5-HT3 receptors nor α2-ARs.34  Alternatively, the biphasic actions of the 

combination might be due to a combination of these mechanisms. For example, the low-

dose potentiating effect (i.e., effect illustrated by Peak A) might be caused by activation 

of 5-HT3 receptors, whereas the potentiating effect produced by a higher dose of MD-

354 (21; 10 mg/kg; Peak B) might be due to action at one or more of the α2-ARs (α2A-, 

α2B-, and/or α2C-ARs).34 
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Figure 12. Potentiation of the antinociceptive effect (± S.E.M.) of an “inactive” 

antinocicpetive dose of clonidine (7; 0.25 mg/kg) by MD-354 (21; 0.3-30 mg/kg) in the 

mouse tail-flick assay. Asterisks denote a significant difference compared to the control 

group [clonidine (7) 0.25 mg/kg]; *P < 0.05, **P < 0.01, one-way ANOVA followed by 

Dunnett’s post hoc test. 34 
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The role of 5-HT3 receptors in the potentiation of clonidine (7)-induced 

antinociception by MD-354 (21) depicted by Peaks A and B (Figure 12).  Since MD-354 

(21) is a 5-HT3 receptor partial agonist, it is possible that its potentiating effect on 

clonidine (7) antinociception is due to either 5-HT3 receptor agonism or antagonism.  

The role of 5-HT3 receptors in the potentiation of clonidine (7) antinociception by a low- 

and high dose of MD-354 (21) illustrated by Peaks A and B (Figure 12), respectively, 

was examined by co-administration of 5-HT3 receptor antagonists with: (a) clonidine (7) 

alone and (b) the combination of MD-354 (21; 1.0 or 6.0 mg/kg) and clonidine (7; 0.25 

mg/kg).   

When administered alone via the s.c. route, three 5-HT3 receptor antagonists 

[ondansetron (23; 0.02-2.0 mg/kg), zacopride (24; 0.0001-2.0 mg/kg), and tropisetron 

(25; 0.0001-1.0 mg/kg)] showed saline-like effects in the mouse tail-flick assay, but 

significantly potentiated the antinociceptive effect of an “inactive” dose of clonidine (7; 

0.25 mg/kg).29  This potentiating effect suggests that blockade of 5-HT3 receptors can 

augment the analgesic properties of clonidine (7).  Therefore, it is possible that 5-HT3 

receptor antagonism could be implicated in the mechanism underlying Peak A and/or B.   

Tropisetron (25) attenuated the antinociceptive effect observed in Peak A [i.e., 

the effect produced by the co-administration of MD-354 (21; 1.0 mg/kg) and clonidine 

(7; 0.25 mg/kg].34  This observation supports a 5-HT3 receptor agonist mechanism for 

MD-354 (21) in Peak A. 

The role of 5-HT3 receptors in Peak B was examined by mechanistic studies 

involving 5-HT3 receptor antagonists.  For example, the 5-HT3 receptor antagonist 

zacopride (24) failed to potentiate the antinociceptive effect of MD-354 (21) in the 
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mouse tail-flick assay; that is, co-administration of zacopride (24) and MD-354 (21) 

produced saline-like effects.29  Also, the potentiation of clonidine (7; 0.25 mg/kg) by a 

high dose of MD-354 (21; 6.0 mg/kg) was neither potentiated nor attenuated by 

zacopride (24). 29,33  This suggests that the effect represented by Peak B is not due to 5-

HT3 receptor agonist action. 

Additional mechanistic studies were conducted. In the mouse tail-flick assay, the 

more selective 5-HT3 receptor antagonist tropisetron (25; 0.0001-1.0 mg/kg) in 

comparison to zacopride (24; acts at both 5-HT3 and 5-HT4 receptors) was also found to 

neither potentiate nor attenuate the antinociceptive effect of the MD-354/clonidine (21/7) 

combination when a high dose of MD-354 (21; 6 mg/kg) was administered.29  These 

combined results indicated a 5-HT3 receptor agonist mechanism associated with Peak 

A only. 

It seems rather unlikely that the potentiating effect associated with Peak B is due 

to the 5-HT3 receptor agonist character of MD-354 (21) because two structurally diverse 

5-HT3 receptor antagonists [zacopride (24) and tropisetron (25)] failed to block the 

antinociceptive effect of the MD-354/clonidine (21/7) combination (Peak B).29  

Alternatively, it is possible that the potentiation of the antinociceptive effect of clonidine 

(7) by a high dose (6.0 mg/kg) of MD-354 (21) might be due to 5-HT3 receptor 

antagonism.  This hypothesis was supported by the potentiating action of 5-HT3 

receptor antagonists [e.g., zacopride (24), tropisetron (25), and ondansetron (23)] co-

administered with clonidine (7) in the mouse tail-flick assay.29 

The role of α2-ARs in the potentiation of clonidine (7)-induced antinociception by 

MD-354 (21) depicted by Peaks A and B (Figure 12).  Various α2-AR antagonists with 
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different binding selectivity were examined for their antinociceptive properties both 

alone and in combination with low and high doses (1.0 or 6.0 mg/kg, respectively) of 

MD-354 (21) and 0.25 mg/kg of clonidine (7).  One difficulty in mechanistic studies 

involving the three subtypes of α2-ARs is the lack of highly selective ligands. Only 

preferentially adrenoceptor-selective antagonists are known; for example, imiloxan (12) 

and BRL44408 (15) have modest selectivity at α2B- and α2A-ARs, respectively (see 

Figure 6 for α2-AR binding affinities). 82,136,137 

The non-selective α2-AR antagonist yohimbine (11; 0.1-1.0 mg/kg) and the 

moderately selective α2B- and α2A-AR antagonists imiloxan (12; 0.1-1.0 mg/kg) and 

BRL44408 (15; 0.3-10 mg/kg), respectively, showed no antinociceptive effects when 

administered alone.31,33  Yohimbine (11) and BRL44408 (15) failed to affect the 

analgesic properties of an “inactive” dose of clonidine (7; 0.25 mg/kg); that is, the co-

administration of yohimbine (11) and clonidine (7), as well as BRL44408 (15) and 

clonidine (7), produced saline-like effects in the tail-flick assay.31  Conversely, imiloxan 

(12; 0.1-3.0 mg/kg) significantly potentiated the antinociceptive effect of a saline-like 

dose of clonidine (7; 0.25 mg/kg).31  Although this does not rule out a possible α2A- or 

α2C-AR mechanism, the results obtained with imiloxan (12) suggest that α2B-AR 

antagonists can potentiate the action of clonidine (7).  In other words, if MD-354 (21) 

behaves as an α2B-AR antagonist, then it might be potentiating the antinociceptive effect 

of clonidine (7; Peak A and/or B) via an α2B-AR antagonist mechanism of action.  

In the mouse tail-flick assay, the non-selective α2-AR antagonist yohimbine (11) 

blocked the analgesic effect of Peak A [1.0 mg/kg dose of MD-354 (21) + 0.25 mg/kg 

dose of clonidine (7)] in a dose-dependent manner (AD50 = 0.33 mg/kg), which suggests 
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that at least one of the α2-AR subtypes is involved in the action.31  Next, preferentially 

selective agents were studied; imiloxan (12) and BRL44408 (15) both attenuated the 

antinociceptive effect of the co-administration of MD-354 (21; 1.0 mg/kg) and clonidine 

(7; 0.25 mg/kg) in a dose-dependent fashion (AD50 = 0.17 and 2.1 mg/kg, 

respectively).31  Because, by definition, antagonists block the effect of agonists, these 

observations suggest an α2-AR agonist mechanism in the actions associated with Peak 

A. 

Thus far, imiloxan (12) is the only α2-AR agent that has been examined in 

mechanistic studies of Peak B.  And, although imiloxan (12) was found to attenuate the 

effect of a lower dose of MD-354 (21; 1 mg/kg) in combination with clonidine (7; 0.25 

mg/kg) illustrated by Peak A, it failed to alter the enhanced antinociception produced by 

administration of a 6 mg/kg dose of MD-354 (21) in combination with clonidine (7; 0.25 

mg/kg) depicted by Peak B.31,33  These results suggest that the antinociceptive effect 

produced by co-administration of a lower dose (1.0 mg/kg) of MD-354 (21) and 0.25 

mg/kg dose of clonidine (7) is mediated by an α2B-AR agonist mechanism (i.e., an α2B-

AR agonist mechanism seems to play a role in the effect associated with Peak A, but 

not Peak B; Figure 12).   

Initial binding data for imiloxan (12) at cloned human α2-ARs (Ki: α2A = 1584, α2B 

= 126, α2C = 1000 nM)136 suggested α2B-AR preferential selectivity, but later studies 

showed reduced binding selectivity (Ki: α2A = 3,109, α2B = 562, and α2C = 1,025 nM), as 

well as functional activity ([35S] GTPγS assay; Ki: α2A = 316, α2B = 68, α2C = 151 

nM).31,137  The latter studies showed very modest selectivity with an α2B-AR activity of 

only five- and two-times greater than that for α2A-AR and α2C-AR activity, respectively.  
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Due to possible low α2-AR subtype selectivity, it is difficult to rule out an α2B-AR 

involvement in the action for Peak B.   

To date, MD-354 (21) seems to potentiate the antinociceptive effect of clonidine 

(7), at least in part, via a 5-HT3 receptor and an α2-AR mechanism.31,29  It is unclear 

which AR subtypes are specifically involved; α2A- and α2B-ARs seem to play a role due 

to attenuation of the effect of the MD-354/clonidine (21/7) combination by the 

reasonably selective antagonists BRL44408 (15) and imiloxan (12), respectively, but an 

α2C-AR mechanism cannot be ruled out because imiloxan (12) has moderate affinity and 

activity at α2C-ARS.31   
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III.  Specific aims and rationale 

 

A. To further investigate the mechanism of action of the analgesia-potentiating 

effect of clonidine (7) by MD-354 (21) 

 

Epidural administration of clonidine (7), an α2-AR agonist, is one of the few non-

opioid FDA-approved treatments of cancer pain.  Although clonidine (7) is a potent 

analgesic agent, it produces undesirable side effects, including sedation and 

hypotension, limiting its use to clinical settings.70,73,74  One of the main goals of our 

laboratory is to develop adjuvant agents to minimize the side effects of clonidine (7) 

while retaining its analgesic action.  It has been previously shown by our laboratory that 

MD-354 (21) is a 5-HT3 receptor/α2-AR ligand. Although MD-354 (21) is inactive when 

administered alone, it selectively potentiates the antinociceptive actions of an “inactive” 

analgesic dose of clonidine (7).29,33  This seems to be a selective effect because MD-

354 (21) did not potentiate the sedative effect of clonidine (7).29,33  In other words, MD-

354 (21) potentiates the desired analgesic, but not the adverse sedative effects of 

clonidine (7).  This could have substantial clinical ramifications for the treatment of 

cancer-related pain. 

More specifically, when MD-354 (21; 0.3-30 mg/kg) and a sub-threshold (i.e., an 

“inactive”) analgesic dose of clonidine (7; 0.25 mg/kg) were co-administered, a biphasic 

analgesic effect was observed (Figure 12).34  Analgesic potentiation of clonidine (7)-
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induced antinociception produced by MD-354 (21), illustrated by Peaks A and B (Figure 

12), might be due to different mechanisms (e.g., 5-HT3 receptor agonism/antagonism, 

α2A-, α2B-, or α2C-AR action, or a combination of these mechanisms).  Mechanistic 

studies have determined that this analgesic potentiation is due, at least in part, to a 5-

HT3 receptor and an α2-adrenoceptor mechanism. 29,33   

Since mechanistic studies of Peak A indicate potentiation by 5-HT3 receptor 

agonism, then the more established 5-HT3 receptor agonist meta-

chlorophenylbiguanide (20; mCPBG) should produce a similar effect in combination with 

clonidine (7).  In previous in vivo studies, i.t. administration of mCPBG (20) produced 

antinociceptive effects in some animal models (e.g., rat paw pressure and formalin test; 

Table 4).127-133  However, in the rat tail-flick assay, mCPBG (20; i.t.) failed to produce a 

significant effect.26  But, mCPBG (20) has not been examined in this assay via s.c. 

administration.  Similarly, i.t. administered PBG [19; a much lower-affinity 5-HT3 

receptor agonist, the des-chloro analog of mCPBG (20)], produced saline-like effects in 

the tail-flick assay but, in contrast, showed antinociceptive effects in the hot-plate assay 

when administered by an i.t. route.25  To the best of our knowledge, examination of the 

antinociceptive effect of mCPBG (20) in the hot-plate assay has not been reported. 

In this study, we will determine the antinociceptive actions of mCPBG (20) when 

administered alone in mice via s.c. administration.  Since, mCPBG (20) has not been 

previously examined in the mouse tail-flick assay via a s.c. route of administration, a 

time-course study will be undertaken to determine optimal pre-injection times.  Then, 

combination studies [co-administration of mCPBG (20) and clonidine (7)] will be 

evaluated to determine if mCPBG (20) behaves in a manner similar to MD-354 (21) in 
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the tail-flick assay [i.e., to determine if it potentiates the antinociceptive actions of 

clonidine (7)].  If an ED50 dose (a dose that produces 50% MPE or 50% maximal 

possible effect) of clonidine (7) is administered in combination with mCPBG (20), it will 

be possible to detect either attenuation or potentiation of the effect.  If potentiation by 

mCPBG (20) is observed, 5-HT3 antagonists [e.g., ondansetron (23) and tropisetron 

(25)] will be examined to assess mCPBG’s (20) mechanism of action.  If a 5-HT3 

receptor antagonist blocks the antinociceptive effect of the mCPBG/clonidine (20/7) 

combination, this will provide evidence for a 5-HT3 receptor agonist-mediated 

mechanism of action. 

Literature data concerning mCPBG (20) and related compounds acting as central 

agents is unclear and limited. Contradictory data describing the ability of mCPBG (20) to 

cross the BBB is presented in Table 6.  There seems to be a species-related difference; 

mCPBG (20) appears to cross the BBB in rat but, perhaps, not in mice.115,138,139  Also, 

there is a discrepancy in the log P value depending on the experimental method 

employed.  A log P value for mCPBG of -0.38 has been reported using the shake-flask 

method, whereas our laboratory has shown mCPBG (20) to be more lipophilic (log P = 

1.70) using an HPLC (high performance liquid chromatography) technique. 118,140  In 

general, drugs with log P values ranging from 1.5 to 2.5 can penetrate the BBB.141 

Therefore, the log P value obtained from the shake-flask method indicates negligible 

BBB penetration, whereas data from the HPLC method suggests that mCPBG (20) 

should cross the BBB.  However, it should be noted that the study with mCPBG (20) 

and MD-354 (21) in the shake-flask method employed their water soluble salts 

(hydrochloride and nitrate salts, respectively).   
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Table 6.  Literature summary of the ability of mCPBG (20) to cross the BBB. 

 

mCPBG (20) does cross the BBB mCPBG (20) does not cross the BBB 
 

 mCPBG (20) displaced [3H]GR67330 in 

rat entorhinal cortex.139 
 

 [3H]mCPBG labeled 5-HT3 receptor 

recognition sites in rat brain.138 
 

 Relative retention times using HPLC: 

mCPBG (20) log P = 1.70118  

 

 mCPBG (20) did not displace [3H] 

granisetron in mouse cortical 

membranes.115 
 

 Shake-flask method: mCPBG (20) log 

P = -0.38140 
 

 mCPBG (20) showed hypothermic 

effects [blocked by ondansetron (23)] 

by i.c.v., but not i.p., routes in mice.142 
 

 

There is evidence that mCPBG (20) does not penetrate the BBB (Table 6). This 

might also be a species related effect.  Therefore, in addition to receptor mechanism 

studies, central versus peripheral activity will be evaluated.  If mCPBG (20) is acting via 

a centrally-mediated 5-HT3 receptor agonist mechanism, it should be possible to 

antagonize the effect with the centrally-acting 5-HT3 receptor antagonist tropisetron 

(25).  The quaternary amine analog of tropisetron (25), tropisetron methiodide, behaves 

as a 5-HT3 receptor antagonist that does not readily penetrate the BBB.  Therefore, 

tropisetron methiodide can be utilized as a control because it should only produce a 

peripheral antagonist effect. 

If a 5-HT3 receptor mechanism is supported in the above studies, the role of this 

mechanism in clonidine’s (7) potentiation by MD-354 (21) will be further evaluated by 

examining a centrally-acting 5-HT3 receptor agonist.  Unlike mCPBG (20), there is 

compelling evidence that SR57227A (22; 1-(6-chloropyrid-2-yl)-4-piperidinylamine; 

Figure 10) behaves as an agonist at central 5-HT3 receptors.115  SR57227A (22) 
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displays affinity at 5-HT3 receptors (Ki = 103 nM) but lacks an α2-AR component.115  In 

fact, i.p. administration of SR57227A (22; 1.0-20 mg/kg) has been previously shown to 

produce antinociceptive effects in the mouse tail-flick assay.27  Due to these functional 

properties, the effect of SR57227A (22; s.c.) will be studied when administered alone 

and in combination with clonidine (7) in mouse thermal antinociceptive assays.  A s.c. 

route of administration will be used because our previous studies employed s.c. 

injections and SR57227A (22) can penetrate the BBB and, therefore, should produce 

peripheral and/or central effects via the s.c. route.  Just as in the case of mCPBG (20), 

a time course study is critical in determining optimal pre-injection times. If MD-354 (21) 

potentiates the antinociceptive effect of clonidine (7) via a central 5-HT3 receptor 

agonist mechanism, the centrally-acting 5-HT3 receptor agonist SR57227A (22) should 

also potentiate the effect of an “inactive” dose of clonidine (7).  In fact, it is expected that 

an additive antinociceptive effect will be displayed due to the analgesic actions of 

SR57227A (22) and clonidine (7) when administered alone. 27,33  Analgesic potentiation 

of clonidine (7) by SR57227A (22) will give additional support for a central 5-HT3 

receptor agonist mechanism for Peak A ( Figure 12). 

Since mechanistic studies of the analgesia-potentiating effect of clonidine (7) by 

MD-354 (21) have also suggested a role for α2-ARs (e.g., an α2-AR agonist mechanism 

in Peak A), TDIQ (6; 5,6,7,8-tetrahydro-1,3-dioxolo[4,5-g]isoquinoline; Figure 5) will be 

examined in mouse antinociceptive assays.  TDIQ (6), an agent developed in our 

laboratory, binds to all three α2-AR subtypes (Ki: α2A = 75, α2B = 97, and α2C = 65 nM) 

but possesses no affinity for 5-HT3 receptors.72  Since TDIQ (6) and clonidine (7) have 

similar binding profiles (i.e., they bind nonselectively to α2-ARs), it is expected that TDIQ 
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(6) will display antinociceptive effects in the tail-flick assay.  The goal of this study 

includes the examination of the analgesic effect of TDIQ (6) alone and in combination 

with clonidine (7), as well as mechanistic studies involving selected α2-AR antagonists. 

That is, if TDIQ (6) augments the antinociceptive effect of clonidine (7), then selective 

α2-AR antagonists [e.g., imiloxan (12), ARC-239 (14), and BRL44408 (15)] will be co-

administered with the TDIQ/clonidine (6/7) combination to help explain the mechanism 

of action.  In addition to mechanistic studies, if TDIQ (6) is found to potentiate the 

antinociceptive actions of clonidine (7), an isobolographic analysis will be conducted to 

determine the nature of the potentiation because, due to its similar binding profile, TDIQ 

(6) might simply be another clonidine (7)-like agent. In this case, the effect should be 

additive.   More specifically, an isobolographic analysis will assess if the biological effect 

produced by a combination of TDIQ (6) and clonidine (7) is greater than, equal to, or 

smaller than, the sum of the individual effects of the component drugs. 

 Furthermore, if antinociception is observed with the above agents [mCPBG (20), 

SR57227A (22), and TDIQ (6)] in the tail-flick assay, then analgesic actions will be 

analyzed in a second nociceptive mouse model, the hot-plate assay.  Both of these 

assays model acute thermal pain, but hot-plate latencies are thought to reflect 

supraspinal responses, whereas tail-flick latencies generally reflect spinal responses.143 

The reflexes produced in the tail-flick assay may not always be entirely due to spinal 

responses; they may be affected by supraspinal structures, too.143  In addition, it is 

possible that there is a learned response related to both of these animal models (i.e., 

reiteration of the test can lead to false antinociceptive observations).143  Therefore, it is 

important to subject the animals to the assay conditions sparingly.  Drugs examined in 
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the hot-plate assay will include mCPBG (20), SR57227A (22), and TDIQ (6) alone and 

in combination with clonidine (7).  These combined results should provide information 

related to possible novel mechanisms for pain therapy. 

 And, lastly, a mouse locomotor activity assay is often conducted to evaluate the 

sedative/locomotor properties of antinociceptive agents.  If it is found that an agent (or 

combination of agents) produces a hypolocomotor (or depressant) or a hyperlocomotor 

(or stimulant) action, it is difficult to interpret antinociceptive assay results.  Moreover, 

data are easier to interpret when it is known that the antinociceptive effect is not 

associated with sedation or general behavioral depression (or stimulation), as these 

adverse effects could alter the behavioral interpretation of the mouse assay in a way 

that would emulate analgesic actions.  For example, the hot-plate assay measures the 

time it takes a mouse to jump from a heated surface (or another behavioral response).  

If an agent produces decreased motor activity (i.e., depressed locomotor action), then 

increased jump latency could be erroneously interpreted as an antinociceptive effect.144 

In addition, clonidine (7) produces sedative effects, so it is important to determine if 

potentiation of clonidine’s (7) antinociceptive actions by mCPBG (20) is a selective 

effect.  That is, does a potential adjuvant analgesic [e.g., mCPBG (20), SR57227A (22) 

or TDIQ (6)] selectively potentiate the antinociceptive effects of clonidine (7) or does it 

non-selectively potentiate the antinociceptive and sedative effects of clonidine (7)?  For 

these reasons, it will be valuable to examine the locomotor properties of agents that 

produce an analgesia-potentiating effect in combination with clonidine (7). 
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B.  Exploration of conformationally-constrained rotamers of MD-354 (21) 

 

Another objective of this study is to further investigate the role of 5-HT3 receptors 

in analgesia by developing agents that retain 5-HT3 receptor character with reduced α2-

AR properties.  As already mentioned, the conformational requirements for the 

interaction of imidazolines [e.g., clonidine (7)] with α2-ARs calls for a nearly 

perpendicular plane between the aromatic rings and the imidazoline-containing 

moiety.70  Therefore, if MD-354 (21) mimics the binding mode of clonidine (7), 

conformational constraint, as with 26 (Figure 13), should result in retention of 5-HT3 

receptor affinity but in a reduction of α2-AR affinity.   

Because MD-354 (21) possesses a rotatable bond (bond between C1 and the 

aniline N atom), it exists as an indefinite number of rotamers.  Thus, introduction of 

conformational constraint might enlighten the manner in which MD-354 (21) interacts 

with 5-HT3 receptors.  When MD-354 (21) is constrained into a quinazoline ring [e.g., 2-

amino-7-chloro-3,4-dihydroquinazoline (26) and 2-amino-5-chloro-3,4-

dihydroquinazoline (27)], two extreme rotamers are represented as illustrated in Figure 

13. 

And, indeed, it was determined in initial competitive binding assays that 26, not 

27, has comparable binding affinity to MD-354 (21); 27 has decreased binding affinity at 

5-HT3 receptors relative to 26 (Table 7).140,145  Due to these initial results, 26 seems to 

be the conformationally-constrained analog that best mimics MD-354 (21) and, 

therefore, will be used as the parent compound in subsequent structure-affinity 

relationship studies.   
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Figure 13.  Structures of rotamers of MD-354 (21) and related conformationally-

constrained analogs 26 and 27 (quinazoline numbering indicated in red). 

 

Table 7.  Receptor affinity (Ki, nM) for MD-354 (21) and conformationally-constrained 

MD-354 (21) analogs 26 and 27. 

 Ki (nM) 

 5-HT3 α2A-AR α2B-AR α2C-AR 

MD-354 (21) 35a 825d 25d 140d 

MKD-65 (26) 34b 1384c 555c 1328c 

SY-70 (27) 1021c 1305c 984c 2270c 

aRef. 32, bRef. 140, cRef. 145, and dRef. 33. 

Role of the ring nitrogen atoms.  In order to determine the role of quinazoline ring 

nitrogen atoms in the binding at 5-HT3 receptors, des-nitrogen analogs of 26 will be 

prepared and evaluated (Figure 14).  In other words, nitrogen atoms of 26 will be 
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systematically replaced one by one with an sp2 hybridized carbon atom [e.g., 2-amino-

7-chloroquinoline (28), 3-amino-6-chloroisoquinoline (29), and 2-amino-7-

chloronaphthalene (30); Figure 14].  For example, compound 28 does not contain the 3-

position nitrogen atom of 26, and 29 lacks the 1-position N atom found in 26.  

Compound 30 lacks both of these N atoms.  Compounds 31-33 will evaluate the role of 

saturation/unsaturation on the binding of 28-30 at 5-HT3 receptors.   

N

NH2

Cl

28

N

NH2

Cl

29

NH2

Cl

30

HN

NH2

Cl

31

NH

NH2

Cl

32

NH2

Cl

33  

Figure 14.  Structures of MD-354 (21)-related analogs 28-30 and their reduced forms 

(31-33). 

 

Structure-affinity relationship studies of arylguanidines, such as MD-354 (21), 

have been previously conducted.32,114  It was found that if one of the terminal amine 

nitrogen atoms of MD-354 (21) was replaced by a carbonyl group or H atom (e.g., 34 

and 35), 5-HT3 receptor affinity was abolished (i.e., Ki > 10,000 nM; Figure 15).32  But, 

34 is no longer basic.  Furthermore, it might not be the lack of the N atom that accounts 

for the decreased affinity of 35; rather it might be a lack of electrons associated with the 

amine.  Hence, it would be difficult to predict the affinity of 28 a priori.  Nevertheless, 

based on these studies, if 26 has the same binding mode as MD-354 (21), as 5-HT3 

receptor binding affinity seems to indicate, then 28 might have little to no affinity at 5-

HT3 receptors.  When the aniline nitrogen atom of MD-354 (21) was replaced with an 

sp3 C atom in the arylguanidine SAFIR studies, 5-HT3 receptor affinity was reduced by 
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approximately 35-fold (36; Figure 15).32  Compound 37 also lacked affinity. But, here 

too, the electronic character of the chain has been altered.  Compounds 28-30 will be 

prepared and evaluated to address this issue. 

 

HN O

NH2

Cl

34

N H

NH2

Cl

35

NH2

NH

Cl

36

NH2

Cl

37

Ki: 5-HT3 > 10,000 nM > 10,000 nM 1,200 nM > 10,000 nM  

Figure 15.  MD-354 (21) structure-affinity relationship results; 5-HT3 receptor binding 

affinity reported as Ki values (nM).32 

 

In addition to MD-354 (21) analogs 28-30, the reduced form of each, will be 

synthesized to give 2-amino-7-chloro-1,2,3,4-tetrahydroquinoline (31), 3-amino-6-

chloro-1,2,3,4-tetrahydroisoquinoline (32), and 2-amino-7-chlorotetralin (33), 

respectively (Figure 14).  This will, in effect, modulate the basicities of the amine 

functions in question.  Although it is unknown if these novel agents will retain affinity for 

5-HT3 receptors, it is difficult to predict the trend. If these nitrogen atoms are directly 

implicated in interactions with the receptor (e.g., ionic or H-bond interactions between 

the ligand and the receptor), then the increased basic property of compounds 31-33 will 

be expected to increase 5-HT3 receptor affinity in comparison to compounds 28-30.  For 

example, compound 30 and 33 contain an aniline versus an aliphatic sp3 hybridized 

amine moiety, which have approximate pKa values of 4.6 and 10.6, respectively.148  

Therefore, compound 33 has increased basic character that may improve the strength 

of the interactions with 5-HT3 receptors in comparison with 30.  That is, if the strength of 
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the interactions between the ligand and receptor is enhanced, receptor binding affinity 

will increase (or produce a lower Ki value).  In the case of the modification of 32 to 29, 

as well as 31 to 28, the s character of the ring nitrogen atom (sp3 to sp2 hybridization) is 

increased, which localizes the nitrogen lone electron pair closer to the nitrogen nucleus 

and, therefore, reduces its ability to donate an electron pair (or, in other words, reduces 

its Lewis basicity).  This principle is supported by pKa values for piperidine (11.3) and 

pyridine (5.2).146 

 

Role of the chloro substituent.  It is proposed to prepare the dichloro- and un-

substituted analogs, 2-amino-5,7-dichloro-3,4-dihydroquinazoline (38) and 2-amino-3,4-

dihydroquinazoline (39), respectively (Figure 16). 

 

N NH

NH2

Cl

38

Cl

N NH

NH2

39  

Figure 16.  Structures of conformationally-constrained MD-354 (21) analogs 38 and 39. 

 

In addition to SAFIR studies involving modification to the guanidine moiety of 

MD-354 (21)-related compounds, extensive aryl substitution was also evaluated.  For 

example, the des-chloro analog of MD-354 (21) had reduced 5-HT3 receptor binding 

affinity (phenylguanidine: Ki = 2,340 nM) by approximately 70-fold.32  Also, although m-

chlorophenylguanidine [MD-354 (21): Ki = 35 nM)] possessed the highest binding affinity 

of all the monochlorinated aryl guanidines (e.g., o-chlorophenylguanidine and p-

chlorophenylguanidine: Ki = 190 and 320 nM, respectively), the 3,4-dichloro (Ki = 3.1 
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nM) analog of MD-354 (21) displayed an even higher 5-HT3 receptor binding 

affinity.32,114 Therefore, if it is assumed that the MD-354 (21) conformationally-

constrained analogs bind in a similar manner to MD-354 (21), it might be expected that 

38 and 39 will possess increased and decreased 5-HT3 receptor binding affinity, 

respectively, in comparison to the parent compound, 26. 

 

C.  MD-354 (21) binding mode at α2-adrenoceptors 

 

MD-354 (21), an agent that binds with varied affinity at all three α2-ARs, has been 

found to potentiate the antinociceptive effects of clonidine (7) due, at least in part, to an 

α2-AR mechanism.31  In fact, competitive binding studies indicated that MD-354 (21) 

binds at the low-affinity states of α2A/2B/2C-ARs (Ki = 110, 220, and 4,700 nM, 

respectively) and at the high-affinity states of α2A/2B/2C-ARs (Ki = 825, 25, and 140 nM, 

respectively).31,34  Furthermore, functional assays show that MD-354 (21) is a weak 

partial agonist at α2A-ARs, but an antagonist at α2B/2C-ARs.31   

A goal of the current studies is to explain the binding affinity and functional 

activity of MD-354 (21) via examination of its binding mode to graphic receptor models 

of low- and high-affinity states for α2A-, α2B-, and α2C-ARs.  Since there are no current 

high-resolution structures available for α2-ARs, a model of each subtype of the α2-ARs 

will be generated using the inactive β2-AR crystal structure as a template (pdb = 2RH1; 

Sybyl 8.1).57  These three models of α2A/2B/2C-ARs mimic the low-affinity state because 

an inverse agonist is bound to the β2-AR in the crystal structure (i.e., an inverse agonist 

binds preferentially to the inactive conformation of the receptor).57   
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There are also no high-resolution structures of the active state of α2-ARs or the 

similar β2-ARs.  Therefore, the active or high-affinity state of the α2-ARs will be modeled 

by modifying the low-affinity state models.  The main modifications include: (a) rotation 

of TM6, (b) tilting the TM5 extracellular portion into the binding pocket, and (c) “turning 

on” the toggle switch by modifying the χ1 rotameric state of C6.47, W6.48, and F6.52. 

These modifications will be made and will be assumed to simulate an active state 

because they have been observed in other active-state structures of GPCRs.61-63  To 

validate these α2-AR models, the endogenous ligands NE (1) and EPI (2) will be docked 

(Gold 4.0) and their resulting docked poses will be compared to other homology models 

reported in the literature as well as considering available site-directed mutagenesis 

data. 

Since MD-354 (21) contains rotatable bonds (Figure 13), before docking MD-354 

(21) a systematic search will be conducted to identify its low-energy rotamers (Sybyl 

8.1).  These low-energy rotamers will be docked (Gold 4.0) to all six models (i.e., the 

low- and high-affinity states of α2A-, α2B-, and α2C-AR models) to determine binding 

modes.  Results from this study will provide homology models of all three subtypes of 

α2-ARs in both low- and high-affinity states based on a relatively new β2-AR crystal 

structure.57  Also, more specifically, it will present potential binding modes of MD-354 

(21) at all three receptors, which, in turn, might explain its variable binding and 

functional activities at α2A-, α2B-, and α2C-ARs. 
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Summary of the studies involved in the specific aims: 

A. Investigation of the mechanism of action of the analgesia-potentiation effect of 

clonidine (7) by MD-354 (21): 

 Examine clonidine (7) alone in the tail-flick and hot-plate assays. 

 Examine mCPBG (20) alone in the tail-flick and hot-plate assays. 

 Combination #1:  examine mCPBG (20) + clonidine (7) in the tail-flick and hot-

plate assays. 

 Examine the mouse brain-penetrant 5-HT3 receptor agonist SR57227A (22) 

alone in the tail-flick and hot-plate assays. 

 Combination #2:  examine SR57227A (22) + clonidine (7) in the tail-flick and hot-

plate assays. 

 Examine a non-selective adrenoceptor agent lacking 5-HT3 receptor properties, 

TDIQ (6), alone in the tail-flick and hot-plate assays. 

 Combination #3:  examine TDIQ (6) + clonidine (7) in the tail-flick and hot-plate 

assays. 

 If any of the above treatments produce antinociceptive effects in either assay, 

sedative effects will be analyzed in the locomotor activity assay. 

 If analgesic potentiation is observed in any of the combinations (#1-3), 

mechanistic studies will be conducted in the same nociceptive assay. 

 For combinations #1 and 2: examine 5-HT3 receptor antagonists 

[ondansetron (23), tropisetron (25), or tropisetron methiodide] + combination. 

 For combinations #1-3: examine α2-AR antagonists [yohimbine (11), 

BRL44408 (15), imiloxan (12), or ARC-239 (14)] + combination. 
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B. Exploration of conformationally-constrained rotamers of MD-354 (21): 

 To determine the role of the nitrogen atoms of 26, des-amino analogs (28-30) 

and the corresponding reduced forms (31-33) will be synthesized. 

 To determine the role of the chloro substituent of conformationally-constrained 

analogs of MD-354 (21), 38 and 39 will be synthesized. 

C.  Study the MD-354 (21) binding mode at α2-ARs: 

 Construct α2A-, α2B-, and α2C-AR homology models of the inactive state based on 

the inactive β2-AR crystal structure template. 

 Modify the α2A-AR inactive model to generate the α2A-AR active model; α2B- and 

α2C-AR active models will be generated using the α2A-AR active model as a 

template. 

 Dock endogenous ligands [NE (1) and EPI (2)] in the 6 models. 

 Conduct a low-energy conformational search of MD-354 (21). 

 Dock low-energy conformers of MD-354 (21) in the 6 models. 
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IV.  Results and discussion 

 

A.  Pharmacological studies:  Nociceptive and locomotor activity animal models 

and binding assays 

 

Pharmacological assays conducted in this project assessed the potential 

attenuation or potentiation of the antinociceptive effect of the α2-AR agonist clonidine (7) 

by prospective adjuvant agents.  First, the effects of clonidine (7) were evaluated when 

administered alone in all assays utilized in the succeeding combination studies (mouse 

tail-flick, hot-plate, and locomotor assays; control: saline).  Pre-injection times employed 

for clonidine (7) were those previously determined in our laboratory and, therefore, were 

not necessary to re-establish.33,147,148  On the other hand, when evaluating agents in 

behavioral assays such as tail-flick and hot-plate assays, it is best to keep the 

environment constant, which includes the animal “handler”.  Therefore, it was necessary 

to repeat these assays with administration of clonidine (7) using the predetermined pre-

injection times to establish a new dose-response curve for the present studies.  The 

data from these clonidine (7) dose-response curves were used to calculate ED50 values 

and were utilized in statistical analysis of subsequent combination studies.   

In the mouse tail-flick and hot-plate assays, clonidine (7) produced 

antinociceptive effects in a dose-dependent manner (Figures 17 and 18, respectively).  

A low dose of clonidine (7; 0.25 mg/kg) produced saline-like effects, but as the dose 
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was increased (up to 2.0 mg/kg), the observed antinociceptive effect increased (tail-

flick: % MPE = 62-82; ED50 = 0.4 ± 0.07 mg/kg and hot-plate: % MPE = 27-73; ED50 = 

0.9 ± 0.06 mg/kg) in both assays (Figures 17 and 18, respectively).  These ED50 values 

are very similar to previously reported values [clonidine (7) ED50 = 0.5 and 0.8 mg/kg for 

tail-flick and hot-plate assays, respectively].33 
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Figure 17.  Antinociceptive effect (± S.E.M.) of clonidine (7; 0.25-2.0 mg/kg, s.c.) in the 

mouse tail-flick assay (n = 8-24 mice/treatment). Asterisks denote a significant 

difference compared to the control group (saline); **P < 0.01, ***P < 0.001, one-way 

ANOVA (F4,59 = 9.399) followed by Dunnett’s post hoc test. 
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Effect of Clonidine
in the Mouse Hot-Plate Assay
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Figure 18.  Antinociceptive effect (± S.E.M.) of clonidine (7; 0.25-2.0 mg/kg, s.c.) in the 

mouse hot-plate assay (n = 9-10 mice/treatment).  Asterisks denote a significant 

difference compared to the control group (saline); **P < 0.01, ***P < 0.001, one-way 

ANOVA (F4,42 = 11.94) followed by Dunnett’s post hoc test. 

 

Since clonidine (7) has been previously reported to produce sedative effects, its 

central depressant properties (e.g., the locomotor actions: movement episodes, 

movement time, movement distance, and vertical entries) were evaluated in mouse 

locomotor activity assays (Figure 19).29  Subcutaneous administration of a 0.25 mg/kg 

dose of clonidine (7) [i.e., a dose of clonidine (7) shown to be statistically inactive in the 

tail-flick and hot-plate assays] was analyzed in the locomotor activity assay because this 

dose will be used in subsequent combination studies.   
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Figure 19.  Effect (± S.E.M.) of s.c. administered clonidine (7; pre-injection time: 5 min, 

0.25 mg/kg) on (a) total movement episodes, (b) total movement time, (c) total 

movement distance, and (d) vertical entries with a 15-min recording time in the mouse 

locomotor activity assay (n = 8-10 mice/treatment).  Asterisks denote a significant 

difference compared to the control group (saline); **P < 0.01, ***P < 0.001, Student’s t-

test. 

 

Results from the locomotor activity assay indicated a general hypolocomoter 

action of clonidine (7).  That is, s.c. administration of clonidine (7; 0.25 mg/kg) produced 

a significant reduction in locomotor actions in all four parameters compared to saline 

vehicle (Figure 19); total movement episodes (60.2 ± 7.1, P < 0.001), total movement 

times (352.9 ± 60.5 s, P < 0.001), total movement distance (1,414.7 ± 280.9 cm, P < 
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0.01), and vertical entries (15.5 ± 5.2, P < 0.001).  This is a clonidine (7) dose that 

produced saline-like effects in both mouse antinociceptive assays (tail-flick and hot-

plate: Figures 17 and 18, respectively).  Since there was a 5-min pre-injection time for 

clonidine (7), sedative properties were measured for 15 min, which corresponds to the 

pre-injection time in the antinociceptive assays (20 min). 

 

1.  Ondansetron (23) 

 

In previous MD-354/clonidine (21/7) combination studies, the analgesic 

potentiation (depicted by Peak A; Figure 12) was blocked by a 5-HT3 receptor 

antagonist [tropisetron (25)].  Due to differences in actions of various 5-HT3 receptor 

antagonists, a second agent was studied.115  Previously, ondansetron (23; 0.02-2.0 

mg/kg, s.c.) showed no effect in the mouse tail-flick assay (% MPE = 1-4).29 

Ondansetron (23; 0.01-1.0 mg/kg) failed to affect the antinociceptive effects of the Peak 

A MD-354/clonidine (21; 1.0 mg/kg + 7; 0.25 mg/kg) combination (Figure 20). 

Ondansetron (23; 0.01-1.0 mg/kg) was also found to neither attenuate nor potentiate the 

analgesic actions of the Peak B combination [6.0 mg/kg dose of MD-354 (21) + 0.25 

mg/kg dose of clonidine (7); Figure 21]. 
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Figure 20.  Effect (± S.E.M.) of ondansetron (23; 0.01-1.0 mg/kg, s.c.) on the 

antinociceptive action of the MD-354 (21; 1.0 mg/kg, s.c.)/clonidine (7; 0.25 mg/kg, s.c.) 

combination in the mouse tail-flick assay (n = 8-23 mice/treatment).  No significant 

difference (P > 0.05) compared to the control group [MD-354/clonidine (21/7) 

combination] was detected; one-way ANOVA (F3,43 = 0.1831) followed by Dunnett’s post 

hoc test. 
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Figure 21.  Effect (± S.E.M.) of ondansetron (23; 0.01-1.0 mg/kg, s.c.) on the 

antinociceptive action of the MD-354 (21; 6.0 mg/kg, s.c.)/clonidine (7; 0.25 mg/kg, s.c.) 

combination in the mouse tail-flick assay (n = 8-19 mice/treatment).  No significant 

difference (P > 0.05) compared to the control group [MD-354/clonidine (21/7) 

combination] was detected; one-way ANOVA (F3,39 = 1.381) followed by Dunnett’s post 

hoc test. 

 

The results presented in Figure 20 differ from the mechanistic studies using 

tropisetron (25), which indicated a 5-HT3 receptor agonist mechanism for the 

potentiating activity of a low dose of  MD-354 (21; 1.0 mg/kg) in combination with an 

“inactive” dose of clonidine (7; 0.25 mg/kg) depicted by Peak A.34  However, 

ondansetron’s (23) failure to attenuate the effect (Figure 21) of the high-dose 

combination [depicted by Peak B; MD-354 (21; 6.0 mg/kg) + clonidine (7; 0.25 mg/kg)] 

is similar to the mechanistic studies with zacopride (24) and tropisetron (25). 29,33 
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2.  meta-Chlorophenylbiguanide (20; mCPBG) 

 

 a) Tail-flick assay 

 

In the present study, the more established 5-HT3 receptor agonist mCPBG (20) 

was evaluated alone and in combination with clonidine (7) to examine its possible 

potentiation of clonidine (7)-induced analgesia.  After comparing antinociceptive effects 

produced by mCPBG (20) with a 20- and 45-min pre-injection time, it was determined 

that 45 min was optimal (Figure 22).  Nevertheless, as illustrated by the dose-response 

curves, mCPBG (20; 0.3-10 mg/kg, s.c.) failed to produce significant antinociception (% 

MPE < 36) when administered alone (Figure 22). 
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Figure 22.  Antinociceptive effect (± S.E.M.) of mCPBG [20; 0.3-10 mg/kg, s.c., 20-min 

(orange squares) or 45-min (green triangles) pre-injection times] in the mouse tail-flick 

assay (n = 7-9 mice/treatment).  No significant difference (P > 0.05) compared to the 

control group (saline) was detected; one-way ANOVA (F5,41 = 1.079 and F5,44 = 0.6228, 

respectively) followed by Dunnett’s post hoc test.  Saline data not shown. 
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mCPBG (20; 0.3-10 mg/kg, s.c.), although inactive when administered alone, 

potentiated an “inactive” dose of clonidine (7; 0.25mg/kg, s.c.) dose-dependently in the 

mouse tail-flick assay (ED50 = 1.6 ± 0.14 mg/kg; Figure 23a).  In fact, the potentiating 

effect observed by the mCPBG/clonidine (20/7) combination persisted for at least 120 

min (Figure 23b). 

Since mCPBG (20) was found to potentiate the antinociceptive effect of an 

“inactive” dose of clonidine (7; Figure 23), the effect of 5-HT3 receptor and α2-AR 

antagonists on the effect of mCPBG (20)/clonidine (7) was examined.149  Ondansetron 

(23), which has been used clinically to treat chemotherapy-induced nausea and 

vomiting, is a 5-HT3 receptor antagonist.  When ondansetron (23; 0.00001-2.0 mg/kg) 

was co-administered with the mCPBG/clonidine (20/7) combination, neither attenuation 

nor potentiation was observed in comparison to the effect produced by mCPBG (20; 6.0 

mg/kg) and clonidine (7; 0.25 mg/kg) in the tail-flick assay (Figure 24). 
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Figure 23.  (a)  Antinociceptive effect (± S.E.M.) of mCPBG (20; 0.3-10 mg/kg, s.c., 45-
min pre-injection time) in combination with clonidine (7; 0.25 mg/kg, s.c.) in the mouse 
tail-flick assay (n = 8-24 mice/treatment).  Asterisks denote a significant difference 
compared to the control group (0.25 mg/kg dose of clonidine; 7); **P < 0.01, ***P < 
0.001, one-way ANOVA (F5,88 = 5.002) followed by Dunnett’s post hoc test.  (b)  
Antinociceptive effect (± S.E.M.) of mCPBG (20; 10 mg/kg) in combination with clondine 
(7; 0.25 mg/kg) at variable mCPBG (20) pre-injection times (20-120 min) in the mouse 
tail-flick assay (n = 8-17 mice/treatment).  
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Figure 24.  Effect (± S.E.M.) of ondansetron (23; 0.00001-2.0 mg/kg, s.c.) on the 

antinociceptive action of the mCPBG (20; 6.0 mg/kg, s.c.)/clonidine (7; 0.25 mg/kg, s.c.) 

combination in the mouse tail-flick assay (n = 8-16 mice/treatment).  No significant 

difference (P > 0.05) compared to the control group [mCPBG/clonidine (20/7) 

combination] was detected; one-way ANOVA (F7,66 = 0.3224) followed by Dunnett’s post 

hoc test. 

   

The second 5-HT3 receptor antagonist examined was tropisetron (25) because 

previously reported studies have shown opposing effects among 5-HT3 receptor 

antagonists [e.g., ondansetron (23) and tropisetron (25)].115  Although tropisetron (25; 

0.0000001-1.0 mg/kg, s.c.) showed no effect when administered alone (% MPE < 10; 

data not shown), tropisetron (25; 0.00001-0.1 mg/kg) attenuated the antinociceptive 

effect of the mCPBG/clonidine (20/7) combination as illustrated by a U-shaped dose-

response curve (Figure 25).29,150  The results indicate that a 0.0001 mg/kg dose of 
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tropisetron (25) significantly blocked the potentiating effect of clonidine (7) by mCPBG 

(20; Figure 25).   
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Figure 25.  Effect (± S.E.M.) of tropisetron (25; 0.00001-0.1 mg/kg, s.c.) on the 

antinociceptive action of the mCPBG (20; 6.0 mg/kg, s.c.)/clonidine (7; 0.25 mg/kg, s.c.) 

combination in the mouse tail-flick assay (n = 8-16 mice/treatment).  Asterisks denote a 

significant difference compared to the control group [mCPBG/clonidine (20/7) 

combination]; *P < 0.05, one-way ANOVA (F5,50 = 2.866) followed by Dunnett’s post hoc 

test. 

 

 

Since tropisetron (25) studies indicated involvement of a 5-HT3 receptor 

mechanism, the quaternized analog of tropisetron (tropisetron methiodide) was 

examined in combination studies.  Tropisetron methiodide behaves as a 5-HT3 receptor 

antagonist, but does not readily cross the BBB.116  As a result, the analyses of 

tropisetron (25) and tropisetron methiodide not only examine the receptor mechanism, 

but also can support or refute a centrally-mediated effect.  In other words, tropisetron 
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methiodide acts as a control because it will only produce peripheral effects (if any).  

Tropisetron methiodide (0.00001-0.1 mg/kg) did not alter the antinociception produced 

by the combination in the mouse tail-flick assay (Figure 26). 
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Figure 26.  Effect (± S.E.M.) of tropisetron methiodide (0.00001-0.1 mg/kg, s.c.) on the 

antinociceptive action of the mCPBG (20; 6.0 mg/kg, s.c.)/clonidine (7; 0.25 mg/kg, s.c.) 

combination in the mouse tail-flick assay (n = 8-17 mice/treatment).  No significant 

difference (P > 0.05) compared to the control group [mCPBG/clonidine (20/7) 

combination] was detected; one-way ANOVA (F3,45 = 0.9382) followed by Dunnett’s post 

hoc test. 

 

And finally, to determine if there is an α2-AR component associated with the 

potentiation of clonidine (7) by mCPBG (20; Figure 23), the non-selective α2-AR 

antagonist yohimbine (11) was examined.  When administered alone, yohimbine (11; 

0.1-1.0 mg/kg, s.c.) produced saline-like effects in the mouse tail-flick assay (% MPE < 

1).31,150  
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Figure 27.  Effect (± S.E.M.) of α2-AR antagonist yohimbine (11; 0.01-6.0 mg/kg, s.c.) 

on the antinociceptive action of the mCPBG (20; 6.0 mg/kg, s.c.) and clonidine (7; 0.25 

mg/kg, s.c.) combination in the mouse tail-flick assay (n = 8-16 mice/treatment).  

Asterisks denote a significant difference compared to the control group 

[mCPBG/clonidine (20/7) combination]; *P < 0.05, **P < 0.01, ***P < 0.001, one-way 

ANOVA (F6,62 = 6.525) followed by Dunnett’s post hoc test. 

 

Yohimbine (11; 0.01-6.0 mg/kg), however, attenuated the potentiating effect of 

the mCPBG/clonidine (20/7) combination in a dose-dependent manner in the mouse 

tail-flick assay (AD50 = 0.04 mg/kg, 95% CL = 0.006-0.2 mg/kg; Figure 27).  

 

 b)  Hot-plate assay 

 

Before any combination studies were conducted, the antinociceptive effect of the 

agents when administered alone was examined in the mouse hot-plate assay.  In prior 

hot-plate studies, clonidine (7) displayed reduced analgesic potency (ED50 = 0.9 mg/kg; 

Figure 18) in comparison to the tail-flick assay (ED50 = 0.4 mg/kg; Figure 17).  And 
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similar to the tail-flick results (Figure 22), mCPBG (20; 0.3-10 mg/kg) failed to produce 

any significant analgesic effects in the hot-plate assay (% MPE = 3-14; Figure 28). 
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Figure 28.  Antinociceptive effect (± S.E.M.) of mCPBG (20; 0.3-10 mg/kg, s.c.) in the 

mouse hot-plate assay (n = 8 mice/treatment).  No significant difference (P > 0.05) 

compared to the control group (saline) was detected; one-way ANOVA (F5,42 = 1.212) 

followed by Dunnett’s post hoc test. 

 

In the present investigation, clonidine (7; 1.0 mg/kg dose, which approximately 

equals the calculated ED50 dose, and which produced about 50% MPE) was co-

administered with mCPBG (20; 0.3-10 mg/kg, s.c.).  And while 0.3-1.0 mg/kg doses of 

mCPBG (20) only slightly attenuated (% MPE = 27-32; P > 0.05) the antinociceptive 

effect of clonidine (7), significant attenuation (% MPE = 13.5 ± 4.9; P < 0.01) was 

observed when 3.0 mg/kg of mCPBG (20) was co-administered (Figure 29).   
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Figure 29.  Antinociceptive effect (± S.E.M.) of mCPBG (20; 0.3-10 mg/kg, s.c.) in 

combination with clonidine (7; 1.0 mg/kg, s.c.) in the mouse hot-plate assay (n = 8-10 

mice/treatment).  Asterisks denote a significant difference compared to the control 

group (1.0 mg/kg dose of clonidine; 7); **P < 0.01, one-way ANOVA (F4,45 = 2.844) 

followed by Dunnett’s post hoc test. 

 

The attenuating effect of clonidine (7)-induced antinociception by mCPBG (20; 

0.3-3.0 mg/kg) seemed to be dose-dependent (AD50 = 0.8 mg/kg, 95% CL = 0.25-2.6 

mg/kg).  However, a higher dose of mCPBG [(20): 10 mg/kg] only slightly antagonized 

(P > 0.05) the effect [i.e., the effect produced by clonidine (7; 1.0 mg/kg) alone was not 

significantly different than that of the co-administration of mCPBG (20; 10 mg/kg) and 

clonidine (7; 1.0 mg/kg); Figure 29].  It is important to note, there was a rather large 

standard error in this combination (% MPE = 31.4 ± 9.7; Figure 29). 
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 c)  Locomotor activity assay 

 

Analgesic actions were observed when mCPBG (20) was co-administered with 

clonidine (7; 0.25 mg/kg dose) in the mouse tail-flick assay (Figure 23a).  It was 

necessary to determine if this antinociceptive potentiation was a selective potentiation.  

In other words, does mCPBG (20) only potentiate the analgesic actions of clonidine (7) 

and not its sedative properties?  Also, because clonidine (7) has already been reported 

to display hypolocomotor effects, the dose used in the tail-flick assay [0.25 mg/kg 

clonidine (7)] should be evaluated in the same species (male ICR mice) and should be 

used as a control for the combination treatment group.29  A low dose of clonidine (7; 

0.25 mg/kg), which showed no analgesic effects in the tail-flick and hot-plate assays, 

produced hypolocomotor actions (Figure 19). 
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Figure 30.  Effect (± S.E.M.) of the co-administration of mCPBG (20; 6.0 mg/kg, s.c., 

pre-injection time: 30 min) and clonidine (7; 0.25 mg/kg, s.c., pre-injection time: 5 min) 

on (a) total movement episodes, (b) total movement time, (c) total movement distance, 

and (d) vertical entries with a 15-min recording time in the mouse locomotor activity 

assay (n = 10 mice/treatment).  No significant difference (P > 0.05) compared to the 

control group [clonidine (7) 0.25 mg/kg] was detected; Student’s t-test. 

 

The doses selected for the locomotor activity combination studies [6.0 mg/kg 

mCPBG (20) + 0.25 mg/kg clonidine (7)] were those that produced a statistically 
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significant increase in antinociceptive effects (% MPE = 68.0 ± 9.3; P < 0.01) in the tail-

flick assay (Figure 23a).  As illustrated in Figure 30, mCPBG (20; 6.0 mg/kg) did not 

alter the locomotor effects of clonidine (7; 0.25 mg/kg) in any of the four parameters 

measured (P > 0.05).   

 

  d)  Summary 

 

The antinociceptive effects of the more established and selective 5-HT3 receptor 

agonist mCPBG (20) administered alone and combination with an “inactive” dose of 

clonidine (7) was examined in the mouse tail-flick assay because a structurally similar 

agent, MD-354 (21), has been shown to potentiate the analgesic actions of clonidine (7) 

in a biphasic manner (Figure 12).34  Previous mechanistic studies suggested that the 

first potentiation peak (Peak A in Figure 12), which is produced by a low dose of MD-

354 (21; 1.0 mg/kg) and clonidine (7; 0.25 mg/kg) is, at least in part, due to a 5-HT3 

receptor agonist mechanism and involvement of an α2-AR mechanism.34  To date, it is 

unclear which α2-AR subtype is involved.34  As for the mechanism of action underlying 

Peak B [6.0 mg/kg MD-354 (21) + 0.25 mg/kg clonidine (7)], 5-HT3 receptor antagonism 

and α2-AR involvement seems to play a role. 29,31 

In the present investigation, similar to results obtained with MD-354 (21), 

mCPBG (20; 0.3-10 mg/kg) displayed no antinociceptive effects when administered 

alone (Figure 22), but potentiated the analgesic actions of an “inactive” dose of 

clonidine (7; 0.25 mg/kg) in the mouse tail-flick assay (Figure 23a).  In fact, this 

potentiation was observed over the course of 2 hours (Figure 23b).  On the other hand, 
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unlike the biphasic curve observed with the co-administration of MD-354 (21) and 

clonidine (7; 0.25 mg/kg), the dose-response curve illustrating the potentiation by 

mCPBG (20) was monophasic (Figures 12 and 21a).   

In the second nociceptive animal model (hot-plate assay), mCPBG (20; 0.3-10 

mg/kg) also showed no analgesic effects when administered alone (Figure 28), but 

contrary to the tail-flick assay, mCPBG (20) dose-dependently attenuated clonidine’s (7; 

1.0 mg/kg) effect (Figure 29).  Although it was found to be statistically insignificant, 

antagonistic behavior was also observed when MD-354 (21) was co-administered with 

clonidine (7) in the mouse hot-plate assay.33 

And lastly, locomotor effects were evaluated in the analgesia producing 

combination [6.0 mg/kg mCPBG (20) + 0.25 mg/kg clonidine (7); tail-flick assay].  The 

results indicated that even though mCPBG (20) potentiated the antinociceptive effects 

of a low dose of clonidine (7) in the mouse tail-flick assay, it did not alter clonidine’s (7) 

locomotor properties (Figure 30).   

 

3.  SR57227A (22) 

 

 a) Tail-flick assay 

 

Thus far, MD-354 (21) and mCPBG (20) have been examined in combination 

studies with clonidine (7), and analgesic potentiation of an “inactive” dose of clonidine 

(7) was observed with both of these agents.  Mechanistically, this potentiation effect 

seemed to be, at least in part, due to a 5-HT3 receptor action.  There is question as to 
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whether MD-354 (21) and mCPBG (20) penetrate the mouse BBB.  In contrast, 

SR57227A (22) has been demonstrated to be brain penetrant.  Therefore, the analgesic 

properties of the centrally-acting 5-HT3 receptor agonist SR57227A (22) was examined 

both alone and in combination with clonidine (7).  If potentiation is observed when 

SR57227A (22) is co-administered with clonidine (7), then mechanistic studies involving 

5-HT3 receptor antagonists will be conducted. 

In the tail-flick assay, SR57227A (22; 0.3-10 mg/kg) showed saline-like effects 

(i.e., the antinociceptive effect produced by SR57227A (22) was not statistically different 

than saline; Figure 31).  At the highest dose (30 mg/kg) evaluated, SR57227A (22) 

produced an increase in antinociception and even though there was a relatively large 

standard error, statistical analysis (one-way ANOVA followed by Dunnett’s post hoc 

test) verified a difference between the treatment and control group (P < 0.05; Figure 31). Effect of Clonidine and SR57227A alone
in the Mouse Tail-Flick Assay
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Figure 31.  Antinociceptive effect (± S.E.M.) of SR57227A (22; 0.3-30 mg/kg, s.c.) in 

the mouse tail-flick assay (n = 8 mice/treatment).  Asterisks denote a significant 

difference compared to the control group (saline); *P < 0.05, one-way ANOVA (F6,49 = 

4.344) followed by Dunnett’s post hoc test. 
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 Tail-flick latency, which is the time delay between the onset of intense light and 

the tail-flick response, is a second way of measuring tail-flick results.  When the results 

from SR57227A (22) administered alone were analyzed in this way, there was no 

significant difference between the high dose of SR57227A (22; 30 mg/kg) and saline in 

the Dunnett’s post hoc test (P > 0.05) but, interestingly, it was determined as being 

significantly different in the Newman-Keuls multiple comparison test (P < 0.05; Figure 

32). Effect of SR57227A in the
Mouse Tailf-Flick Assay
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Figure 32.  Antinociceptive effect (± S.E.M.) of SR57227A (22; 0.3-30 mg/kg, s.c.) in 

the mouse tail-flick assay (n = 8 mice/treatment).  No significant difference (P > 0.05) 

compared to the control group (saline) was detected; one-way ANOVA (F6,49 = 4.574) 

followed by Dunnett’s post hoc test. 

 

Although not significantly different from saline, lower doses of SR57227A (22; 

0.3-10 mg/kg) showed reduced tail-flick latency (Figures 31 and 32).  Therefore, 

hyperalgesia was examined in a modified tail-flick assay (radiant heat was adjusted so 
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that pre-treatment tail-flick latencies were 5-7 s).  Dose-dependent hyperalgesic effects 

were observed in the SR57227A (22; 1.0-10 mg/kg)-treated mice (Figure 33). Effect of SR57227A
in the Mouse Tail-flick Assay

0

2

4

6

8

10

1.0
mg/kg

SR57227A

T
a

il
-f

li
c

k
 L

a
te

n
c

y
 (

s
)

NOTE: SIGNIFICANCE BASED ON STUDENT'S t-TEST

***
***

Saline
pre- and
post-tmt

3.0
mg/kg

SR57227A

10
mg/kg

SR57227A
 

Figure 33.  Hyperalgesic effect (± S.E.M.) of SR57227A (22; 1.0-10 mg/kg, s.c.) in the 

modified mouse tail-flick assay (n = 6-8 mice/treatment).  For each treatment group, 

bars on the left depict the pre-treatment tail-flick latency.  Asterisks denote a significant 

difference compared to the control group (pre-treatment tail-flick latency); ***P < 0.001, 

Student’s t-test. 

 

 

Because MD-354 (21) and mCPBG (20) both potentiated the antinociceptive 

actions of an “inactive” dose of clonidine (7; 0.25 mg/kg), this same dose of clonidine (7) 

was co-administered with the selective 5-HT3 receptor agonist SR57227A (22).  In the 

mouse tail-flick assay, SR57227A (22; 0.3-10 mg/kg, s.c.) did not alter the analgesic 

properties of a saline-like dose of clonidine (7; Figure 34). 
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Effect of SR57227A in Combination with Clonidine (0.25 mg/kg)
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Figure 34.  Antinociceptive effect (± S.E.M.) of SR57227A (22; 0.3-10 mg/kg, s.c.) in 

combination with clonidine (7; 0.25 mg/kg, s.c.) in the mouse tail-flick assay (n = 8-24 

mice/treatment).  No significant difference (P > 0.05) compared to the control group 

[0.25 mg/kg dose of clonidine (7)] was detected; one-way ANOVA (F5,58 = 0.6047) 

followed by Dunnett’s post hoc test. 

 

 Since no potentiation was observed in the previous combination, a higher, more 

effective dose of clonidine (7; calculated ED50 = 0.5 mg/kg) was selected to determine if 

SR57227A (22) blocks the antinociceptive effect of clonidine (7; Figure 35). 
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Effect of SR57227A in Combination with Clonidine (0.5 mg/kg)
in the Mouse Tail-Flick Assay
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Figure 35.  Antinociceptive effect (± S.E.M.) of SR57227A (22; 0.3-10 mg/kg, s.c.) in 

combination with clonidine (7; 0.5 mg/kg, s.c.) in the mouse tail-flick assay (n = 8-24 

mice/treatment).  No significant difference (P > 0.05) compared to the control group [0.5 

mg/kg dose of clonidine (7)] was detected; one-way ANOVA (F5,66 = 0.4993) followed by 

Dunnett’s post hoc test.  

 

Similar to Figure 34, this combination [0.3-10 mg/kg doses of SR57227A (22) + 

0.5 mg/kg dose of clonidine (7)] produced clonidine (7)-like effects (Figure 35).  That is, 

the antinociceptive effects of clonidine (7) were neither potentiated nor attenuated by 

SR57227A (22). 

 

 b) Hot-plate assay 

 

In the hot-plate assay, s.c. administration of SR57227A (22; 0.3-10 mg/kg) 

produced no antinociception (compared to saline control) but, just as before (i.e., similar 

to the tail-flick assay results), a higher dose (30 mg/kg) produced analgesic actions 
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(Figure 36).  This high dose of SR57227A (22; 30 mg/kg) was significantly different than 

the saline control (P < 0.001; Figure 36). Effect of SR57227A
in the Mouse Hot-Plate Assay
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Figure 36.  Antinociceptive effect (± S.E.M.) of SR57227A (22; 0.3-30 mg/kg, s.c.) in 

the mouse hot-plate assay (n = 8-9 mice/treatment).  Asterisks denote a significant 

difference compared to the control group (saline); ***P < 0.001, one-way ANOVA (F5,47 

= 5.322) followed by Dunnett’s post hoc test. 

 

In combination studies, SR57227A (22; 0.3-10 mg/kg) neither potentiated nor 

attenuated the antinociceptive effect of clonidine (7; 1.0 mg/kg; Figure 37). 
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Figure 37.  Antinociceptive effect (± S.E.M.) of SR57227A (22; 0.3-10 mg/kg, s.c.) in 

combination with clonidine (7; 1.0 mg/kg, s.c.) in the mouse hot-plate assay (n = 9-20 

mice/treatment).  No significant difference (P > 0.05) compared to the control group 

[SR57227A/clonidine (22/7) combination] was detected; one-way ANOVA (F4,53 = 

0.4547) followed by Dunnett’s post hoc test. 

 

In summary, SR57227A (22; 0.3-10 mg/kg) produced no analgesic properties in 

both examined antinociceptive assays (tail-flick and hot-plate assays) when 

administered alone and in combination with clonidine (7), but a higher dose (30 mg/kg), 

this 5-HT3 receptor agonist (22) showed augmented antinociceptive effects in the 

mouse tail-flick and hot-plate assays (P < 0.05 and P < 0.001, respectively).   

 

 c) Locomotor activity assay 

 

In the mouse locomotor activity assay, a 30 mg/kg dose of SR57227A (22; dose 

that produced antinociceptive effects; Figures 32 and 36) was administered s.c.  and 

compared to a s.c. saline treatment group (Figure 38).  Statistical analysis of the 
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examined locomotor parameters (e.g., total movement episodes, total movement time, 

total movement distance, and total vertical entries) indicated a significant hypolocomotor 

action of SR57227A (22; 30 mg/kg) in comparison to saline (P < 0.01; Figure 38).  That 

is, the only SR57227A (22) dose that produced antinociceptive effects in the tail-flick 

and hot-plate assays, also, produced sedative effects in mice. 
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Figure 38.  Effect (± S.E.M.) of SR57227A (22; 30 mg/kg, s.c., pre-injection time: 0 min) 

on (a) total movement episodes, (b) total movement time, (c) total movement distance, 

and (d) vertical entries with a 45-min recording time in the mouse locomotor activity 

assay (n = 8 mice/treatment).  Asterisks denote a significant difference compared to the 

control group (saline); **P < 0.01, ***P < 0.001, Student’s t-test. 
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Potentiation of clonidine’s (7) analgesic properties by SR57227A (22) was not 

observed in either nociceptive animal model (Figures 34, 35 and 37) and therefore, the 

locomotor activity of the combination was not examined. 

 

 d) Summary 

 

In summary, SR57227A (22; 0.3-10 mg/kg, s.c.) produced saline-like effects in 

both antinociceptive assays (P > 0.05; Figures 31 and 34).  Conversely, a higher dose 

(30 mg/kg) of SR57227A (22) showed a significant increase in analgesic actions in 

comparison to saline in the tail-flick and hot-plate assays (P < 0.05 and P < 0.001, 

respectively; Figures 31 and 36).  However, SR57227A (22; 30 mg/kg, s.c.) showed 

decreased motor activity in all locomotor parameters (movement episodes, movement 

time, movement distance, and vertical entries) in the mouse locomotor activity assay 

(Figure 38).  Because low doses of SR57227A (22; 0.3-10 mg/kg) showed slight 

analgesic attenuation in the tail-flick assay, a modified tail-flick assay was conducted to 

detect hyperalgesia.  Indeed, SR57227A (22) produced hyperalgesic effects (P < 0.001) 

in the modified tail-flick assay (Figure 33). 

In the tail-flick combination studies, SR57227A (22; 0.3-10 mg/kg, s.c.) neither 

potentiated nor attenuated the antinociceptive effect of clonidine (7; 0.25 or 0.5 mg/kg, 

s.c.; Figures 34 and 35).  Similar to the tail-flick results, SR57227A (22; 0.3-10 mg/kg, 

s.c.) did not alter the antinociception produced by clonidine (7; 1.0 mg/kg, s.c.) in the 

hot-plate assay (Figure 37). 
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4.  TDIQ (6) 

 

 a) Tail-flick assay 

 

An α2-AR role in the potentiation of clonidine (7; 0.25 mg/kg) by MD-354 (21) was 

proposed because previous mechanistic studies showed analgesic attenuation of the 

MD-354/clonidine (21/7) combination by the following α2-AR antagonists: yohimbine (11; 

non-selective α2-AR antagonist), imiloxan (12; preferentially selective α2B-AR 

antagonist), and BRL44408 (15; preferentially selective α2A-AR antagonist).31  

Therefore, the α2-AR agonist TDIQ (6) was selected to further examine the mechanism 

of action.  Although TDIQ (6) acts nonselectively at all three subtypes of α2-ARs, it is 

devoid of 5-HT3 receptor activity.72   

TDIQ (6; 0.3-10 mg/kg), when administered alone in the tail-flick assay, showed 

no analgesic properties (% MPE = 1-10; Figure 39).  However, when TDIQ (6; 0.3-3.0 

mg/kg) was co-administered with clonidine (7; 0.25 mg/kg), potentiation of the 

antinociceptive effect was observed (ED50 = 0.6 mg/kg, 95% CL = 0.2-1.3 mg/kg; Figure 

40).  That is, TDIQ (6) potentiated the antinociceptive effect of an “inactive” dose of 

clonidine (7) in a dose-dependent manner (Figure 40). 
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Figure 39.  Antinociceptive effect (± S.E.M.) of TDIQ (6; 0.3-10 mg/kg, s.c.) in the 

mouse tail-flick assay (n = 8 mice/treatment).  No significant difference (P > 0.05) 

compared to the control group (saline) was detected; one-way ANOVA (F4,35 = 0.6850) 

followed by Dunnett’s post hoc test. 
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Figure 40.  Antinociceptive effect (± S.E.M.) of TDIQ (6; 0.3-3.0 mg/kg, s.c.) in 

combination with clonidine (7; 0.25 mg/kg, s.c.) in the mouse tail-flick assay (n = 8-24 

mice/treatment).  Asterisks denote a significant difference compared to the control 

group (0.25 mg/kg dose of clonidine; 7); *P < 0.05, **P < 0.01, one-way ANOVA (F3,51 = 

10.19) followed by Dunnett’s post hoc test.   
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Since 1.0 and 3.0 mg/kg doses of TDIQ (6) potentiated the antinociceptive 

actions of clonidine (7; 0.25 mg/kg), TDIQ (6) in combination with a lower dose of 

clonidine (7) was investigated.  TDIQ (6) did not significantly alter the effect of the lower 

dose (0.1 mg/kg) of clonidine (7; Figure 41). 
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Figure 41.  Antinociceptive effect (± S.E.M.) of TDIQ (6; 0.3-10 mg/kg, s.c.) in 

combination with clonidine (7; 0.1 mg/kg, s.c.) in the mouse tail-flick assay (n = 8-16 

mice/treatment).  No significant difference (P > 0.05) compared to the control group [0.1 

mg/kg dose of clonidine (7)] was detected; one-way ANOVA (F4,51 = 1.579) followed by 

Dunnett’s post hoc test. 

 

 

Since TDIQ (6) was found to potentate the analgesic action of clonidine (7; 0.25 

mg/kg) in the mouse tail-flick assay (Figure 40), additional combination studies were 

conducted to investigate the mechanism of action (Figure 40).  The following α2-AR 

antagonists were selected for mechanistic studies: BRL44408 (15; preferentially 

selective at α2A-ARs), imiloxan (12; preferentially selective at α2B-ARs), and ARC-239 
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(14; preferentially selective at α2B/2C-ARs).  All three α2-AR antagonists lacked 

antinociceptive effects when administered alone in the mouse tail-flick assay (% MPE = 

0-5).31,150  When BRL44408 (15; 0.03-3.0 mg/kg, s.c.) was co-administered with the 

combination, attenuation of the antinociceptive effect of the combination [3.0 mg/kg 

dose of TDIQ (6) + 0.25 mg/kg dose of clonidine (7)] was observed (AD50 = 0.2 mg/kg, 

95% CL = 0.05-0.5 mg/kg; Figure 42).  
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Figure 42.  Effect (± S.E.M.) of BRL44408 (15; 0.03-3.0 mg/kg, s.c.) on the 

antinociceptive action of the TDIQ (6; 3.0 mg/kg, s.c.)/clonidine (7; 0.25 mg/kg, s.c.) 

combination in the mouse tail-flick assay (n = 8-15 mice/treatment).  Asterisks denote a 

significant difference compared to the control group [TDIQ/clonidine (6/7) combination]; 

*P < 0.05, ***P < 0.001, one-way ANOVA (F6,59 = 9.751) followed by Dunnett’s post hoc 

test. 

 

Imiloxan (12; 0.1-3.0 mg/kg, s.c.) only attenuated (P < 0.05) the analgesic effect 

of the TDIQ/clonidine (6/7) combination at a medium dose (0.3 mg/kg; Figure 43).  That 

is, lower (0.1 mg/kg) and higher (1.0-3.0 mg/kg) doses of imiloxan (12) did not alter (P > 
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0.05) the antinociception produced by the combination [3.0 mg/kg TDIQ (6) + 0.25 

mg/kg clonidine (7); Figure 43]. 
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Figure 43.  Effect (± S.E.M.) of imiloxan (12; 0.1-3.0 mg/kg, s.c.) on the antinociceptive 

action of the TDIQ (6; 3.0 mg/kg, s.c.)/clonidine (7; 0.25 mg/kg, s.c.) combination in the 

mouse tail-flick assay (n = 8-15 mice/treatment).  Asterisks denote a significant 

difference compared to the control group [TDIQ/clonidine (6/7) combination]; *P < 0.05, 

one-way ANOVA (F4.45 = 3.223) followed by Dunnett’s post hoc test. 

 

Finally, the α2B/2C-AR antagonist ARC-239 (14; 0.3-10 mg/kg, s.c.) blocked the 

analgesic actions of the TDIQ/clonidine (6/7) combination in a dose-dependent manner 

(AD50 = 0.6 mg/kg, 95% CL = 0.2-2.3 mg/kg; Figure 44).   
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Effect of ARC-239 on the TDIQ/Clonidine Combination
in the Mouse Tail-Flick Assay

0

20

40

60

80

100

%
 M

P
E

3.0 10

ARC-239 Dose (mg/kg)

Saline TDIQ
3.0 mg/kg

+ Clonidine
0.25 m/kg

0.3 1.0

*
*

**

***

 

Figure 44.  Effect (± S.E.M.) of ARC-239 (14; 0.3-10 mg/kg, s.c.) on the antinociceptive 

action of the TDIQ (6; 3.0 mg/kg, s.c.)/clonidine (7; 0.25 mg/kg, s.c.) combination in the 

mouse tail-flick assay (n = 8-15 mice/treatment).  Asterisks denote a significant 

difference compared to the control group [TDIQ/clonidine (6/7) combination]; *P < 0.05, 

**P < 0.01, ***P < 0.001, one-way ANOVA (F4,44 = 7.435) followed by Dunnett’s post 

hoc test. 

 

Clearly, TDIQ (6) potentiates the antinociceptive action of clonidine (7).  If both 

clonidine (7) and TDIQ (6) are non-selective (among α2-ARs) α2-AR agonists, TDIQ’s 

(6) potentiation of clonidine (7)-induced antinociception might simply be an additive 

effect of the two agents.  To further characterize the analgesic potentiation of clonidine 

(7; 0.25 mg/kg) produced by TDIQ (6; Figure 40), an isobolographic analysis was 

conducted.  An isobolographic analysis is a method that assesses if a biological effect 

produced by a combination of drugs is greater than, equal to, or smaller than, the sum 

of the individual effects of the component drugs.  Specifically, does TDIQ (6) behave in 

a synergistic or simply additive manner when co-administered with clonidine (7) in the 

mouse tail-flick assay?   
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In an isobolographic analysis, synergism is evaluated by comparing the 

experimental ED50mix of a fixed-ratio of TDIQ (6) and clonidine (7) to the theoretical 

ED50add of a simply additive mixture having the same proportions.  Since TDIQ (6) does 

not produce antinociception when administered alone, the ED50add will only be 

dependent on clonidine’s (7) effect.  First, co-administration of fixed ratios of the 

TDIQ/clonidine (6/7) combination were examined in the tail-flick assay; the co-

administration of the 3:1 and 12:1 fixed-ratios of TDIQ (6) and clonidine (7) resulted in a 

leftward shift compared to the clonidine (7) dose-response regression line (Figure 45). 

 

 

0

20

40

60

80

100

Clonidine

TDIQ + Clonidine (12:1)

TDIQ + Clonidine (3:1)

0.1 0.25 0.5 1.0 2.0

Log Clonidine Dose (mg/kg)

%
M

P
E

 

Figure 45.  Dose-response lines determined by regression analysis for clonidine (7) 

alone (red squares) and the co-administration of TDIQ (6) and clonidine (7) given in a 

3:1 (green circles) and 12:1 (blue triangles) fixed-ratio in the mouse tail-flick assay (n = 

8-24 mice/treatment), plotted as log clonidine (7) dose. 
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Next, a regression analysis of % MPE vs. log total dose graphically presented 

ED50clonidine (0.44 mg/kg), ED50mix (0.79 mg/kg) for the 3:1 fixed-ratio, and ED50mix (1.64 

mg/kg) for the 12:1 fixed-ratio (Figure 46).  ED50add values for both fixed-ratios can be 

calculated: ED50add = ED50clonidine/P = 0.44/(1/4) = 1.76 mg/kg for the 3:1 fixed ratio and 

ED50add = ED50clondine/P = 0.44/(1/13) = 5.72 mg/kg for the 12:1 fixed ratio. 
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Figure 46.  Dose-response lines determined by regression analysis for clonidine (7) 

alone (red squares) and co-administration of TDIQ (6) and clonidine (7) given in a 3:1 

(green circles) and 12:1 (blue triangles) fixed-ratio in the mouse tail-flick assay (n = 8-24 

mice/treatment), plotted as log total administered dose. 

 

The line of additivity is based solely on ED50clonidine because TDIQ (6) was found 

to be inactive when administered alone in the mouse tail-flick assay (Figure 39).  

Because both ED50mix values are plotted significantly below the line of additivity, the 3:1 
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and 12:1 fixed ratios of TDIQ (6) and clonidine (7) behaved in a synergistic manner (P < 

0.5 and P < 0.01, respectively; Figure 47). 
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Figure 47.  The isobologram shows the line of additivity (broken gray line), ED50mix for 

the 3:1 (green circles) and 12:1 (blue triangles) fixed-ratios of TDIQ (6) and clonidine 

(7), and ED50add (red squares) from the mouse tail-flick results (n = 8-24 

mice/treatment).  Asterisks denote a significant difference compared to the control 

(ED50add values); *P < 0.05, **P < 0.01, Student’s t-test. 

 

Since the experimental ED50mix for a 3:1 and 12:1 fixed-ratio of TDIQ (6) and 

clonidine (7) was statistically different than the theoretical ED50add
 of a simply additive 

mixture having the same proportions, TDIQ (6) potentiates the analgesic actions of 

clonidine (7) in a synergistic (or super-additive) manner [i.e., the isobologram (Figure 

47) suggests that the biological effect (antinociception) produced by the combination of 
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TDIQ (6) and clonidine (7) is greater than the sum of the individual effects of the 

component drugs]. 

 

 b) Hot-plate assay 

 

The analgesic properties of TDIQ (6) administered alone and in combination with 

clonidine (7) in a second nociceptive animal model, the hot-plate assay, were examined.  

When TDIQ (6) was s.c. administered in mice, no antinociception was observed in the 

hot-plate assay (Figure 48). This lack of antinociception is similar to the tail-flick results 

for TDIQ (6; Figure 39). 

 Effect of TDIQ
in the Mouse Hot-Plate Assay

0

20

40

60

80

100

0.3

TDIQ Dose (mg/kg)

1.0 3.0 10Saline

%
 M

P
E

 

Figure 48.  Antinociceptive effect (± S.E.M.) of TDIQ (6; 0.3-10 mg/kg, s.c.) in the 

mouse hot-plate assay (n = 8-10 mice/treatment).  No significant difference (P > 0.05) 

compared to the control group (saline) was detected; one-way ANOVA (F4,41 = 0.2881) 

followed by Dunnett’s post hoc test. 
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In the tail-flick combination studies, TDIQ (6) potentiated a low, “inactive” dose of 

clonidine (7; 0.25 mg/kg; Figure 40) and, therefore, the first hot-plate combination study 

examined the co-administration of a low, “inactive” dose of clonidine (7; 0.25 mg/kg) and 

TDIQ (6).  Unlike in the tail-flick assay, TDIQ (6) did not potentiate the antinociceptive 

effects of a low dose of clonidine (7) in the mouse hot-plate assay (Figure 49).  In fact, 

there seemed to be a slight attenuation of effect; this observed attenuation was not 

significantly different from the control. 
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Figure 49.  Antinociceptive effect (± S.E.M.) of TDIQ (6; 0.3-10 mg/kg, s.c.) in 

combination with clonidine (7; 0.25 mg/kg, s.c.) in the mouse hot-plate assay (n = 8-28 

mice/treatment).  No significant difference (P > 0.05) compared to the control group 

[0.25 mg/kg dose of clonidine (7)] was detected; one-way ANOVA (F4,56 = 2.191) 

followed by Dunnett’s post hoc test. 

 

Due to slight attenuation observed in Figure 49, the dose of clonidine (7) was 

increased so that significant attenuation by TDIQ (6) might be more readily observed.  

TDIQ (6; 0.3-10 mg/kg) co-administered with a dose similar to the calculated ED50 (0.9 
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mg/kg) of clonidine (7; 1.0 mg/kg) produced a significant decrease in antinociception 

(AD50 = 1.4 mg/kg, 95% CL = 0.26-7.84 mg/kg) in comparison to clonidine (7; 1.0 

mg/kg) alone (% MPE = 50.6 ± 6.2; Figure 50).   A similar analgesic attenuation (% 

MPE = 32-36) by TDIQ (6; 0.3-10 mg/kg) was detected in an even larger dose of 

clonidine (7; 2.0 mg/kg; Figure 51). Effect of TDIQ in Combination with Clonidine (1.0 mg/kg)
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Figure 50.  Antinociceptive effect (± S.E.M.) of TDIQ (6; 0.3-10 mg/kg, s.c.) in 

combination with clonidine (7; 1.0 mg/kg, s.c.) in the mouse hot-plate assay (n = 9-20 

mice/treatment).  Asterisks denote a significant difference compared to the control 

group (1.0 mg/kg dose of clonidine; 7); *P < 0.05, **P < 0.01, one-way ANOVA (F4,53 = 

3.927) followed by Dunnett’s post hoc test.   
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Effect of TDIQ in Combination with Clonidine (2.0 mg/kg)
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Figure 51.  Antinociceptive effect (± S.E.M.) of TDIQ (6; 0.3-10 mg/kg, s.c.) in 

combination with clonidine (7; 2.0 mg/kg, s.c.) in the mouse hot-plate assay (n = 11-19 

mice/treatment).  Asterisks denote a significant difference compared to the control 

group (2.0 mg/kg dose of clonidine; 7); *P < 0.05, **P < 0.01, one-way ANOVA (F4,58 = 

4.954) followed by Dunnett’s post hoc test.   

 
In the mouse hot-plate assay, the non-selective α2-AR agonist TDIQ (6; 0.3-10 

mg/kg) produced no antinociceptive effects when administered alone (Figure 48) and 

interestingly, attenuated the analgesic actions of a 1.0 and 2.0 mg/kg dose of clonidine 

(7; Figures 50 and 49, respectively).  This attenuating effect produced by TDIQ (6) 

differs from that observed in the tail-flick assay (Figure 40). 

 

 c) Locomotor activity assay 

 

Locomotor activity of TDIQ (6; 0.3-3.0 mg/kg, s.c.) alone and in combination with 

clonidine (7; 0.25 mg/kg, s.c.) has been previously examined in our laboratory.151  TDIQ 

(6; 0.3-3.0 mg/kg, s.c.) did not significantly differ from saline in the mouse locomotor 
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activity assay in all four stimulant parameters (P > 0.05) with one exception (Figure 52).  

A 3.0 mg/kg dose of TDIQ (6) did show decreased vertical entries (P < 0.05; data not 

shown). 
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Figure 52.  Effect (± S.E.M.) of TDIQ (6; 0.3-3.0 mg/kg) alone and in combination with 

clonidine (7; 0.25 mg/kg) on (a) total movement episodes and (b) total movement time 

with a 45-min recording time in the mouse locomotor activity assay (n = 8 

mice/treatment).  No significant difference (P > 0.05) compared to the control group 

[saline and clonidine (7; 0.25 mg/kg), respectively] was detected; one-way ANOVA (F3,22 

= 0.4039 and F3,20 = 0.3899) followed by Dunnett’s post hoc test.151   
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In the combination studies, co-administration of TDIQ (6; 0.3-3.0 mg/kg) and 

clonidine (7; 0.25 mg/kg) produced locomotor activity similar to the effect observed by 

the s.c. administration of clonidine (7; 0.25 mg/kg) alone (Figure 52).   

 

 d) Summary 

 

Briefly, when TDIQ (6) was administered alone, it produced no antinociceptive 

effects in the tail-flick (Figure 39) and hot-plate (Figure 48) assays.  And since MD-354 

(21) potentiated clonidine’s (7) antinociceptive effect, at least in part, by an α2-AR 

mechanism, the effect of the co-administration of the α2-AR agonist TDIQ (6) and 

clonidine (7) was also examined.  Indeed, TDIQ (6) potentiated the analgesic effect of 

an “inactive” dose of clonidine (7; 0.25 mg/kg) in the mouse tail-flick assay (Figure 40).  

In contrast, although statistically non-significant, TDIQ (6) slightly attenuated the effect 

of an even lower dose (0.1 mg/kg) of clonidine (7; Figure 41).  To further characterize 

the analgesic potentiation observed in Figure 40, an isobolographic analysis was 

conducted.  These studies indicated that 3:1 and 12:1 fixed ratios of TDIQ (6) and 

clonidine (7) behave synergistically in the mouse tail-flick assay (Figure 47). 

To investigate the mechanism of action, α2-AR antagonists were co-administered 

with the TDIQ/clonidine (6/7) combination.  More specifically, the preferentially selective 

α2A-AR antagonist BRL44408 (15; 0.03-3.0 mg/kg), α2B-AR antagonist imiloxan (12; 0.1-

3.0 mg/kg), and α2B/2C-AR antagonist ARC-239 (14; 0.3-10 mg/kg) significantly 

attenuated the analgesic potentiation of clonidine (7; 0.25 mg/kg) produced by TDIQ (6) 

in the mouse tail-flick assay (Figures 42, 43, and 44, respectively).   
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In the hot-plate assays, TDIQ (6) initially seemed to have no effect on the 

antinociceptive actions of clonidine (7; 0.25 mg/kg; Figure 49), but the effect of higher 

doses (1.0 and 2.0 mg/kg) of clonidine (7) was significantly attenuated by TDIQ (6; 

Figures 50 and 49, respectively). 

In the final pharmacological studies, the locomotor activity of TDIQ (6) alone and 

in combination with clonidine (7) was assessed.  In the mouse locomotor activity assay, 

s.c. administration of TDIQ (6; 0.3-3.0 mg/kg) produced saline-like effects (Figure 52).  

But more importantly, the TDIQ/clonidine (6/7) combinations that produced enhanced 

antinociceptive effects in the tail-flick assay (Figure 40) were examined in the mouse 

locomotor activity assay; results indicated that the co-administration of TDIQ (6; 0.3-3.0 

mg/kg) and clonidine (7; 0.25 mg/kg) was not statistically different than control [clonidine 

(7); Figure 52].   
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Table 8.  Summary of the pharmacological assays; the dose of clonidine (7; where employed) in all 
combination studies is 0.25 mg/kg. 

Treatment Mouse tail-flick assay Mouse hot-plate 

assay 
MD-354 (21; up to a 30 mg/kg dose) inactive

33
 inactive

33
 

Clonidine (7) ED50 = 0.4 mg/kg ED50 = 0.9 mg/kg 

     + MD-354 (21) biphasic potentiation
34

 no potentiation
33

 

MD-354 (21; 1.0 mg/kg) + clonidine (7) 

 
  

     + ondansetron (23) failed to attenuate  

     + tropisetron (25) AD50 = 0.00047 mg/kg
34

  

     + yohimbine (11) AD50 = 0.33 mg/kg
31

  

     + BRL44408 (15) AD50 = 2.1 mg/kg
31

  

     + imiloxan (12) AD50 = 0.17 mg/kg
31

  

MD-354 (21; 6.0 mg/kg) + clonidine (7)   

     + ondansetron (23) failed to attenuate  

     + zacopride (24) failed to attenuate
 33,29

  

     + tropisetron (25) failed to attenuate
 29

  

     + yohimbine (11) AD50 = 2.3 mg/kg  

     + imiloxan (12) attenuated (s.c.)  

     + imiloxan (12) failed to attenuate (i.p.)
 33

  

mCPBG (20; up to a 10 mg/kg dose) inactive inactive 

mCPBG (20) + clonidine (7; ED50 dose)  AD50 = 0.8 mg/kg 

mCPBG (20) + clonidine (7) ED50 = 1.6 mg/kg  

     + ondansetron (23) failed to attenuate  

     + tropisetron (25) attenuated  

     + tropisetron methiodide failed to attenuate  

     + yohimbine (11) AD50 = 0.04 mg/kg  

SR57227A (22; 0.3-10 mg/kg) inactive inactive 

     + clonidine (7) failed to potentiate  

     + clonidine (7; ED50 dose) failed to potentiate/attenuate failed to potentiate/attenuate 

TDIQ (6; up to a 10 mg/kg dose)  inactive inactive 

TDIQ (6) + clonidine (7; ED50 dose)  attenuated 

TDIQ (6) + clonidine (7) ED50 = 0.6 mg/kg failed to potentiate 

     + BRL44408 (15) AD50 = 0.2 mg/kg  

     + imiloxan (12) AD50 = 0.2 mg/kg  

     + ARC-239 (14) AD50 = 0.6 mg/kg  
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5.  Binding assays 

 

Various agents [(-)NE (1), TDIQ (6), clonidine (7), and MD-354 (21)] were 

evaluated in α2A-, α2B-, and α2C-AR binding assays: [35S]GTPγS and competitive 

radioligand binding assays (conducted Dr. Scheinin’s Laboratories at University of 

Turku, Turku, Finland).  In the [35S]GTPγS  binding assays, activity was analyzed under 

low salt conditions (i.e., low concentration of NaCl and GDP in the buffer solutions) that 

favor the detection of partial agonism.152  In general, partial agonists do not show 

activity in high salt conditions.   

(-)NE (1), considered as a full agonist, was analyzed as control [i.e., (-)NE’s (1) 

intrinsic activity at each receptor subtype was normalized to 100%].  As depicted in the 

graph (Figure 53a), (-)NE (1) displayed greater efficacy at α2A- and α2B-ARs (Emax  ≈ 

150% over basal levels) in comparison to α2C-ARs (Emax ≈ 75% over basal levels; 

Pohjanoksa and Scheinin, unpublished data).  Similarly, the potency of (-)NE (1) is 

greater at α2A/2B-ARs (EC50 = 106 and 145 nM, respectively) than α2C-ARs (EC50 = 612 

nM; Pohjanoksa and Scheinin, unpublished data; Table 9).   
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Figure 53.  Effects of α2-AR agents [a) (-)NE (1), b) TDIQ (6), c) clonidine (7), and d) 

MD-354 (21)] on [35S]GTPγS binding (incubation buffer containing low Na+ and GDP 

concentrations) in CHO cell membranes expressing human α2-ARs (α2A: ●; α2B: ■; α2C: 

▲).  Data points represent the mean ± S.E.M. (each dose examined in triplicate). 

 

TDIQ (6), clondine (7), and MD-354 (21) were of lower efficacy than the full 

agonist (-)NE (1; IA = 100%) at all three α2-AR subtypes in the [35S]GTPγS binding 

assays; that is, intrinsic activity was less than 100% (Figure 53; Pohjanoksa and 

Scheinin, unpublished data).  Table 9 summarizes the potency (EC50) and efficacy [%IA 

of (-)NE (1)] of the agents examined at α2A-, α2B-, and α2C-ARs (Pohjanoksa and 

Scheinin, unpublished data). 
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Table 9.  Characterization of [35S]GTPγS binding to CHO cell membranes expressing 

human α2A-, α2B-, or α2C-ARs in low salt conditions.  Potency is represented as EC50 

values (nM) with the 95% CI in parenthesis.  Efficacy (or maximal stimulation over 

basal) is expressed as intrinsic activity (IA) compared to (-)NE (1; Pohjanoksa and 

Scheinin, unpublished data). 

 

 α2A α2B α2C 

 EC50  

(nM) 

IA [% of  

(-)NE (1)] 

EC50  

(nM) 

IA [% of  

(-)NE (1)] 

EC50  

(nM) 

IA [% of  

(-)NE (1)] 

(-)NE (1) 
106 

(74-152) 

100 145 

(94-223) 

100 612 

(276-1,358) 

100 

TDIQ (6) 
1,312 

(382-4,503) 

22 >10,000 

 

18 6,233 

 

22 

Clonidine (7) 
23 

(16-35) 

62 220 

(82-587) 

36 >10,000 37 

MD-354 (21) 
1,588 

(757-3,333) 

36 >10,000 31 >10,000 41 

 

 

Affinity at α2-AR subtypes (α2A, α2B, and α2C) was examined for the above-

mentioned agents via competitive ligand binding assays employing the α2-AR 

antagonist radioligand [ethyl-3H]RS-79948-197 (Table 10).  The binding affinity for the 

full agonist (-)NE (1) and (as subsequently determined) the partial agonists TDIQ (6), 

clonidine (7) and MD-354 (21) was measured in CHO cells expressing recombinant 

human α2A-, α2B-, and α2C-ARs (Table 10, unpublished data).  Binding affinity for 

SR57227A (22) at α2-AR subtypes was also examined via competitive radioligand 

binding assays employing the human α2-AR agonist radioligand [3H]clonidine (Table 

11).145 
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Table 10.  Competitive binding affinity at human α2-ARs expressed in CHO cells 

employing [ethyl-3H]RS-79948-197 radioligand (α2-AR antagonist).  Binding affinity is 

expressed as Ki values (nM) with the 95% CI in parenthesis (Pohjanoksa and Scheinin, 

unpublished data).31 

 

  Ki (nM)  

Ligand α2A α2B            α2C 

(-)NE (1)    405 (284-578)      579 (421-798)    417 (333-524) 

TDIQ (6)    598 (478-749)   1,183 (904-1,547) 1,782 (1,538-2,065) 

Clonidine (7)      35 (28-45)        98 (81-118)    287 (234-353) 

MD-354 (21)    110 (70-190)      220 (170-280) 4,700 (2,800-7,800) 

 

Table 11.  Competitive binding affinity at human α2-ARs expressed in CHO cells 

employing [3H]clonidine radioligand (α2-AR agonist).  Binding affinity is expressed as Ki 

values ± S.E.M. (nM; unpublished data). 145 

 

  Ki (nM)  

Ligand α2A α2B α2C 

SR57227A (22) 6,653 ± 665 4,990 ± 709 8,222 ± 658 

 

 

TDIQ (6) shows a slight binding preference for α2A-ARs (2- and 3-fold over α2B- 

and α2B-ARs, respectively) but, in general, has relatively low binding affinity at α2-ARs.  

Similarly, clonidine (7) displays higher affinity at α2A-ARs versus α2B- and α2C-ARs (3- 

and 8-fold difference, respectively).  MD-354 (21) binds at α2A- and α2B-ARs with similar 

affinity (Ki = 110 and 220 nM), but with significantly lower binding affinity at α2C-ARs (Ki 

= 4,700 nM).  SR57227A (22), which has been described in the literature as a selective 

5-HT3 receptor agent, displayed negligible binding affinity at human α2A-, α2B-, and α2C-

ARs (Ki > 1,000 nM; Table 11).145   
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6.  Discussion 

 

Pharmacological studies were conducted to further characterize the biphasic, 

analgesic potentiation observed when MD-354 (21; 0.3-10 mg/kg) is co-administered 

with an “inactive” dose of clonidine (7; 0.25 mg/kg) in the mouse tail-flick assay (Figure 

12).135  Since MD-354 (21) binds to 5-HT3 receptors and α2-ARs (Table 5), it is likely 

that each peak (Figure 12) depicts a unique mechanism of action.  For example, the 

potentiation depicted by Peak A could be due to 5-HT3 receptor agonism, whereas Peak 

B potentiation could be due to α2-AR antagonism.  In general, the Peak A and/or B 

potentiating effects could involve: (a) 5-HT3 receptor agonism or antagonism, (b) α2-AR 

(one or more of the receptor subtypes) agonism or antagonism, (c) a combination of the 

above, or (d) neither 5-HT3 receptor nor α2-AR action (i.e., that is, some other, yet 

unidentified, receptor mechanisms might be involved).  Previously reported mechanistic 

studies on MD-354 (21) potentiation of the antinociceptive effect of clonidine (7) might 

provide some insight on Peak A and Peak B potentiation (summarized in Table 12). 
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Table 12.  Summary of the previously reported mechanistic studies associated with the 

analgesic potentiation of clonidine (7; 0.25 mg/kg) by MD-354 (21; 0.3-10 mg/kg). 

 

Mechanistic study results Comments 

Peak A 

 Tropisetron (25) attenuated the 

antinociceptive effect of the MD-354 

(21; 1.0 mg/kg)/clonidine (7; 0.25 

mg/kg) combination.34 
 

 This suggests a 5-HT3 receptor agonist 

mechanism; but not all 5-HT3 receptor 

antagonists [e.g., ondansetron (23)] 

blocked the effect. 

 Yohimbine (11), imiloxan (12), and 

BRL44408 (15) attenuated the 

antinociceptive effect of the MD-354 

(21; 1.0 mg/kg)/clonidine (7; 0.25 

mg/kg) combination.31  

 This suggests an α2-AR agonist 

mechanism (but, it is unclear which α2-

AR subtype is involved). 

Peak B 

 Ondansetron (23), zacopride (24), and 

tropisetron (25) failed to attenuate the 

antinociceptive effect of the MD-354 

(21; 6.0 mg/kg)/clonidine (7; 0.25 

mg/kg) combination.33,29 

 Yohimbine (11) and imiloxan (12) 

attenuated the antinociceptive effect 

of the MD-354 (21; 6.0 mg/kg)/ 

clonidine (7; 0.25 mg/kg) combination 

(unpublished data). 

 This suggests that 5-HT3 receptor 

agonism is not the mechanism of action. 

 

 

 

 This suggests an α2-AR agonist 

mechanism (but, it is unclear which α2-

AR subtype is involved). 

 

 

Peak A or B 

 Ondansetron (23), zacopride (24), and 

tropisetron (25) potentiated the 

antinociceptive effect of clonidine (7; 

0.25 mg/kg).29 
 

 This suggests that 5-HT3 receptor 

antagonists can potentiate the 

antinociceptive effects of clonidine (7). 

 Imiloxan (12) potentiated the 

antinociceptive effects of clonidine (7; 

0.25 mg/kg).31 

 This suggests an α2-AR antagonist can 

potentiate the antinociceptive effects of 

clonidine (7).  
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Although numerous mechanistic studies have been conducted, the mechanism of 

action of the potentiation of clonidine’s (7) antinociceptive effect by MD-354 (21) 

remains elusive.  As summarized in Table 12, 5-HT3 receptors and α2-ARs both seem to 

be involved in both Peak A and B.  For example, a low dose of MD-354 (21; 1.0 mg/kg) 

appears to potentiate the antinociceptive effects of clonidine (7) via a 5-HT3 receptor 

agonist mechanism (Peak A), whereas a higher dose of MD-354 (21; 6.0 mg/kg) might 

be acting as a 5-HT3 receptor antagonist (Peak B). 29,34  The latter mechanism is 

speculative; MD-354 (21) shows partial agonist activity at 5-HT3 receptors and, 

therefore, can behave functionally as an agonist or antagonist.113  Also, as shown in our 

laboratory, three structurally diverse 5-HT3 receptor antagonists [ondansetron (23), 

zacopride (24), and tropisetron (25)] enhanced the analgesic actions of an “inactive” 

dose of clonidine (7) in the tail-flick assay.29  This observed potentiation is unlikely due 

to a central depressant effect because co-administration of these 5-HT3 receptor 

antagonists [e.g., zacopride (24; 0.01 mg/kg) or tropisetron (25; 0.2 mg/kg)] and the α2-

AR partial agonist clonidine (7; 0.25 mg/kg) produced results similar to that of control 

[0.25 mg/kg dose of clonidine (7); P > 0.05] in mouse locomotor activity assays.29  This 

provides evidence that antagonism at 5-HT3 receptors augments the antinociceptive 

effects of clonidine (7), but does not necessarily indicate a 5-HT3 receptor antagonist 

role for MD-354 (21) in its analgesic potentiation of clonidine (7) in the moue tail-flick 

assay.    

In the present investigation, the role of 5-HT3 receptor involvement in the 

potentiation of clonidine (7)-induced analgesia was further evaluated.  A more 

established 5-HT3 receptor agonist, mCPBG (20), and a known centrally-acting 5-HT3 
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receptor agonist, SR57227A (22), were examined to help clarify the mechanism of 

action.  In the mouse tail-flick assay, no antinociception was observed with s.c. 

administration of either mCPBG (20; 0.3-10 mg/kg; Figure 22) or SR57227A (22; 0.3-10 

mg/kg; Figure 31) alone.  However, a high dose (30 mg/kg) of SR57227A (22), 

administered alone, produced a significant effect (P < 0.05; Figure 31).  Dose-

dependent antinociception by SR57227A (22, doses of up to 20 mg/kg; ED50 = 6.5 

mg/kg) has been previously observed in the mouse-tail flick assay but, as opposed to 

the current study (which employed a s.c. route of administration), SR57227A (22) was 

administered via i.p. injection.27  It is possible that the observed antinociceptive effect 

described in the literature is due to route of administration; furthermore, the 

hypolocomotor effects produced by this dose of SR57227A (22), as shown herein, might 

have interfered with interpretation of its antinociceptive actions.  But, two prior studies 

showed no effect in the mouse locomotor assay when low doses (1.0-10 mg/kg) of 

SR57227A (22) were administered i.p., whereas only a high dose (30 mg/kg) showed 

hypolocomotor actions.153,154  This is similar to the results obtained in our laboratory; 

SR57227A (22) elicited saline-like effects when low doses (1.0-10 mg/kg, i.p.) were 

administered, but sedative-like effects were observed when a high dose of SR57227A 

(22; 30 mg/kg) was administered s.c. in the mouse locomotor activity assay (P < 0.01; 

Figure 38).155  It is difficult to reconcile differences between the published 

antinociceptive actions of SR57227A (22) with the present investigation, and even more 

difficult to explain its actions as resulting from sedation, given its lack of effect in 

locomotor assays (except at a very high dose).  But, it might be noted that the single 

report showing that SR57227A (22) possesses antinociceptive action was published 
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only as an abstract and that various details (e.g., mouse strain and gender, pre-injection 

times, time of measurement, and apparatus) were not described.  Nevertheless, 

antinociceptive effects have been produced by other 5-HT3 receptor agonists [5-HT 

(16), 2-methyl-5-HT (17), and mCPBG (20)] in various animal models (tail-flick, paw 

pressure, and formalin assays; refer to Table 4).28,127,128,131-133  Therefore, the 

antinociceptive effects produced by SR57227A (22) are plausible, but inconsistent with 

the present results. 

In the combination studies, albeit mCPBG (20; 0.3-10 mg/kg) augmented the 

antinociceptive effects of an “inactive” dose of clonidine (7; 0.25 mg/kg) in a dose-

dependent manner (Figure 23), SR57227A (22; 0.3-10 mg/kg) had no effect on 

clonidine’s (7) analgesic properties in the mouse tail-flick assay (Figure 31).  It is 

doubtful that the observed antinociception in the mCPBG/clonidine (20/7) treatment 

group is due to the hypolocomotor effects of mCPBG (20); the analgesia-producing 

combination [mCPBG (20; 6.0 mg/kg) + clonidine (7; 0.25 mg/kg)] showed clonidine (7)-

like effects in the mouse locomotor activity assay (Figure 30).  In addition, both i.p. and 

i.c.v. administration of mCPBG (20), alone, elicited saline-like effects in rat locomotor 

activity assays.156,157 

mCPBG (20) and SR57227A (22) have slightly different receptor binding profiles; 

mCPBG (20) binds with high affinity at 5-HT3 receptors (Ki = 17 nM) and with low affinity 

at α2-ARs (Ki = 1,445 or 3,800 nM), 5-HT2A receptors (Ki = 5,700 nM), and 5-HT2C 

receptors (Ki = 1,400 nM), and according to the current literature, SR57227A (22) binds 

with high affinity only at 5-HT3 receptors (Ki = 103 nM).111,115,149,158  It seems that 

SR57227A (22) is relatively selective for 5-HT3 receptors; however, its affinity for other 
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receptors was simply reported as >1,000 nM and specific Ki values were not provided 

(that is, its affinity for these other receptors might be only slightly greater than 1,000 

nM).  Bachy and co-workers described SR57227A (22) as a highly potent and selective 

5-HT3 receptor agonist; depending on the assay conditions, its Ki value at 5-HT3 

receptors was approximately 100 nM (IC50 = 199-258 nM).115  In the same study, 

SR57227A (22) did not bind to other 5-HT receptors (5-HT1A, 5-HT1B, 5-HT1C, 5-HT1D, 5-

HT2, and 5-HT4; IC50 > 1,000 nM, exact Ki values were not reported).115  Since 

SR57227A (22) binding affinity at α2-ARs was ambiguous, our laboratory submitted a 

sample to the PDSP for binding affinity analysis.  Using an α2-AR agonist radioligand 

[3H]clonidine, SR57227A (22) showed little to no affinity for α2-ARs (Ki: α2A = 6,653, α2B 

= 4,990, and α2C = 8,222 nM; Roth, unpublished data; refer to Table 11).145   

In general, both of these agents [mCPBG (20) and SR57227A (22)] bind 

selectively at 5-HT3 receptors, but it is possible that the behavioral activity of mCPBG 

(20) involves α2-ARs and/or 5-HT2A/2C receptors.  This is unlikely because the affinity of 

mCPBG (20) at 5-HT3 receptors is at least 100 times greater than that for the other 

receptors.  Likewise, the lower-affinity 5-HT3 receptor agent SR57227A (22) binds to 

other receptors, such as α2B-ARs, but with very low affinity (Ki ≈ 5,000 nM).145  This 

binding profile indicates moderate binding selectivity at 5-HT3 receptors (50-fold 

difference compared to α2B-ARs).   

The differences observed in the analgesia-potentiating activity of clonidine (7) by 

mCPBG (20) and SR57227A (22) combination studies might be due to species 

difference.  For example, mCPBG (20) binds at rat 5-HT3 receptors with 100-times 

greater affinity than at human 5-HT3 receptors.159  Also, the 5-HT3 receptor efficacy of 
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mCPBG (20) is species dependent: ferret (53%), mouse (91%), rat (100%), and human 

(79-99%).97,159-162  Most in vitro and in vivo pharmacological assays indicate that 

mCPBG (20) is a full 5-HT3 receptor agonist, however, mCPBG (20) exhibited partial 

agonist character in an electrophysiological assay employing NG108-15 cells.163  More 

specifically, the mCPBG (20) response was 54% of the maximal response produced by 

5-HT (16).163  Similar to most other pharmacological studies, mCPBG (20) exhibited a 

full agonist response in a second electrophysiological study (i.e., utilizing N1E-115 

cells).164  To the best of our knowledge, similar studies have not been conducted with 

SR57227A (22), but it is possible that this agent also has variable binding affinity and/or 

efficacy at 5-HT3 receptors in different species. 

Another explanation for the analgesic potentiation observed when mCPBG (20), 

but not SR57227A (22), is co-administered with clonidine (7) is its selectivity for 5-HT3 

receptor subpopulations. That is, action at 5-HT3AB receptors, but not 5-HT3A 

receptors, might cause a potentiation in clonidine’s (7) antinociceptive effects.  If this is 

the case, then it is plausible that mCPBG (20) might act at 5-HT3AB receptors whereas 

SR57227A (22) activates 5-HT3A receptors.  This remains to be investigated. 

To the best of our knowledge, binding affinities (under the same conditions) at 

each human receptor subtype (i.e., 5-HT3A vs. 5-HT3AB) are unknown for mCPBG (20) 

and SR57227A (22).  As reported in the Background section, mCPBG (20; Ki = 17 nM) 

binds at 5-HT3 receptors (mixture of 5-HT3A and 5-HT3AB receptors) with higher affinity 

than SR57227A (22; Ki = 103 nM).111,115  To date, 5-HT3A receptor affinity for these two 

agents have been reported, but the experimental conditions, as well as the species, are 

different.  Ito and co-workers reported binding affinity for 5-HT (16; Ki = 339 nM) and 
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mCPBG (20; Ki = 224 nM) at cloned human 5-HT3A receptors transfected in COS-1 

cells employing [3H]ramosetron (5-HT3 receptor antagonist) as a radioligand.165  

Because our laboratory was analyzing the mouse functional activity  of SR57227A (22), 

investigation of the binding affinity at 5-HT3A receptors was of interest to us.  

SR57227A’s (22; Ki = 357 ± 44 nM) binding affinity at recombinant mouse 5-HT3A 

receptors was evaluated using [3H]LY 278,584 (5-HT3 receptor antagonist; unpublished 

data).145  Unfortunately, these values are meaningless without the 5-HT3AB binding 

affinities of both agents.  It is also difficult to compare the 5-HT3A receptor binding 

affinities of these two agents due to dissimilar experimental conditions. 

Although, binding affinity has not been reported for each receptor subtype, 

mCPBG’s (20) functional activity has been evaluated both at 5-HT3A and 5-HT3AB 

receptors.  Two electrophysiological studies were performed and they both suggest that 

mCPBG (20) has similar potencies at human 5-HT3A and 5-HT3AB receptors (e.g., EC50 

= 2.5 and 2.1 μM, respectively).97,98  But, interestingly, mCPBG (20) showed greater 

efficacy at the homomeric 5-HT3 receptors [5-HT3A receptors: 134%, 5-HT3AB 

receptors: 79%; efficacy is expressed as % of 5-HT (16) effect].97  Assuming that this is 

how mCPBG (20) behaves in mice, it seems reasonable that mCPBG (20) produces a 

greater pharmacological effect via 5-HT3AB receptors than at 5-HT3A receptors.  

Therefore, 5-HT3AB, rather than 5-HT3A, receptor agonism might be responsible for the 

analgesic potentiation observed in the mCPBG/clonidine (20/7) combination (Figure 

23a).  If this is the case, it is possible that the lack of analgesic potentiation of clonidine 

(7) by SR57227A (22) is due to negligible 5-HT3AB receptor activity. 
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Both mCPBG (20) and the structurally-related analog MD-354 (21) were inactive 

(i.e., both agents produced saline-like effects) in the tail-flick assay (Figure 22).33  On 

the other hand, the 5-HT3 receptor agonist SR57227A (22) exhibited pronociceptive 

effects in the mouse tail-flick assay (Figure 33).  That is, SR57227A (22)-treated mice 

showed hyperalgesic effects (or increased sensitivity to pain).  There are other reports 

for the hyperalgesic actions of 5-HT3 receptor agonists.  For example, when 5-HT (16) 

or 2-methyl-5-HT (17) was applied to human blisters, a hyperalgesic effect resulted.110  

The pain-producing effect evoked by 5-HT (16) was inhibited by the 5-HT3 receptor 

antagonist tropisetron (25).110  However, a hyperalgesic effect for SR57227A (22) has 

not been previously reported. 

Since involvement of α2-ARs seems to play a role in the potentiation of the 

antinociceptive actions of clonidine (7) by MD-354 (21), it was initially thought that the 

potentiating effect observed with mCPBG (20) but not SR57227A (22) in the tail-flick 

assay might be due to the difference in receptor binding selectivity [i.e., mCPBG (20) 

may be acting via an α2-AR and not a 5-HT3 receptor mechanism, which would explain 

why a 5-HT3 receptor agent such as SR57227A (22) that lacks α2-AR affinity would not 

potentiate the antinociceptive effects of clonidine (7)].  Hypothetically, if this was correct, 

a 5-HT3 receptor antagonist should not attenuate the antinociceptive effects of the 

mCPBG/clonidine (20/7) combination.  In contrast, the 5-HT3 receptor antagonist 

tropisetron (25; 0.00001-0.1 mg/kg) attenuated the antinociceptive effect of the 

mCPBG/clonidine (20/7) combination, which resulted in a U-shaped dose-response 

curve (Figure 25).  Although it is possible that this type of antagonism (i.e., antagonist 

effect that produces a U-shaped dose-response curve) is sometimes not detected when 
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a full range of doses is not examined, U-shaped dose-response curves are observed 

with many 5-HT3 receptor antagonists [e.g., ondansetron (23)].166,167  Blockade of the 

effect of the mCPBG/clonidine (20/7) combination by the 5-HT3 receptor antagonist 

tropisetron (25) indicates that mCPBG (20) may be potentiating clonidine’s (7) analgesic 

effects via a 5-HT3 receptor agonist mechanism. 

If a 5-HT3 receptor agonist mechanism is involved with the potentiating effect of 

clonidine (7) by mCPBG (20), then it would be expected that a 5-HT3 receptor 

antagonist [e.g., ondansetron (23)] would block the effect of the combination.  

Ondansetron (23) did not alter the antinociceptive effect of the mCPBG/clonidine (20/7) 

combination (Figure 24).  It is important to note that previous pharmacological assays 

involving ondansetron (23) and tropisetron (25) have produced contradictory 

results.168,169  For example, tropisetron (25), but not ondansetron (23), improved 

phencyclidine-induced cognitive deficits in mice.168  And, most analogous to the 

mCPBG (20) studies, our laboratory showed analgesic attenuation in the mouse tail-flick 

assay by tropisetron (25), but not by ondansetron (23), in the low-dose (1.0 mg/kg) MD-

354/clonidine (21/7) combination (Figure 20).34  Therefore, literature precedent suggests 

that ondansetron’s (23) lack of effect in our combination studies does not necessarily 

disprove a 5-HT3 receptor agonist mechanism proposed from the tropisetron (25) 

results. 

Moreover, a locomotor suppressant effect could alter the observed 

antinociceptive effect in the tail-flick assay.  When administered alone, tropisetron (25; 

0.2 mg/kg, s.c.) and ondansetron (23; 0.1-1.0 mg/kg, i.p.) showed saline-like effects in 

the mouse locomotor activity assay.29,155,170  Tropisetron (25; 0.2 mg/kg) co-
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administered with clonidine (7; 0.25 mg/kg) showed slightly reduced locomotor activity.29  

However, this attenuation was not statistically different from control [0.25 mg/kg dose of 

clonidine (7)].29   

To date, it is unknown if mCPBG (20) crosses the BBB; there is contradictory 

literature data (summarized in Table 6).  Although it is unclear if mCPBG (20) behaves 

as a central agent, mechanistic studies suggest that potentiation of the antinociceptive 

effects of clonidine (7) by mCPBG (20) in the mouse tail-flick assay is due to a central 5-

HT3 receptor agonist mechanism because tropisetron (25), but not tropisetron 

methiodide, attenuated this effect (Figures 24 and 24).  Results from this in vivo assay 

provide an indication that mCPBG (20) can cross the BBB.  Similarly, a 5-HT3 receptor 

agonist mechanism was postulated for the analgesic potentiation depicted by Peak A in 

the MD-354/clonidine (21/7) combination studies (Table 12).  There is some indication 

from previous in vivo studies that MD-354 (21) acts as a central agent; MD-354 (21) 

neither substituted for nor antagonized, but enhanced the stimulus effects of 

(+)amphetamine in a rat drug discrimination study.135  Thus far, although a central 

mechanism has also been implied in the mouse tail-flick studies, it is unknown if the 

agonistic behavior of MD-354 (21) is due to central or peripheral activation of 5-HT3 

receptors.  Additional mechanistic studies are required (e.g., pretreatment with 

tropisetron methiodide). 

  In summary, the tail-flick assay results with mCPBG (20) provide evidence for 5-

HT3 receptor agonist potentiation of an “inactive” dose of clonidine (7).  This was the 

same conclusion that was reached from the tail-flick assay results with MD-354 (21; 

Peak A).34  However, the SR57227A (22; 0.3-10 mg/kg) results (Figure 34) indicate that 
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not all 5-HT3 receptor agonists augment the analgesic properties of clonidine (7).  

Possible explanations for the lack of potentiation observed upon co-administration of 

SR57227A (22) and clonidine (7) include:  (a) lower 5-HT3 receptor binding affinity of 

SR57227A (22; Ki = 103 nM) in comparison to mCPBG (20; Ki = 17 nM), (b) action at 

different 5-HT3 receptor subtypes (e.g., 5-HT3A or 5-HT3AB receptors), (c) possible 

offsetting behavioral activity [e.g., pronociceptive effects of SR57227A (22)] due to 

unknown activity at other receptors, (d) species difference, and that (e) unexamined, 

higher doses of SR57227A (22; >10 mg/kg) or temporal parameters might 

produce/influence potentiating activity.  The latter explanation is plausible, but it would 

be difficult to understand if the analgesic potentiation was due to antinociceptive or 

sedative effects because a 30 mg/kg dose of SR57227A (22) was found to produce 

hypolocomotor effects in the present investigation (Figure 38).  In fact, in a previously 

reported study, lower i.p. doses of SR57227A (22; 3-10 mg/kg) exhibited saline-like 

effects, whereas a 30 mg/kg dose (i.p.) significantly reduced locomotor activity (P < 

0.001) in the mouse locomotor activity assay.154   

The role of 5-HT3 receptors in potentiating the analgesic effects of clonidine (7) 

was evaluated in a second nociceptive mouse model, the hot-plate assay.  Similar to 

the results in the tail-flick assay, when administered alone, both mCPBG (20; 0.3-10 

mg/kg) and SR57227A (22; 0.3-10 mg/kg) showed no antinociceptive effects in the hot-

plate assay (Figures 28 and 36, respectively); however, a higher, sedative-producing 

dose of SR57227A (22; 30 mg/kg) showed significant antinociceptive effects in the 

mouse hot-plate assay (Figure 36).  Hence, these “antinociceptive” effects might be 

attributed to the sedative effect of SR57227A (22). 
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In combination studies, MD-354 (21) was found to potentiate the antinociceptive 

effect of clonidine (7) in the tail-flick assay, but not in the hot-plate assay.33  Reports of 

contrasting results in tail-flick and hot-plate assays have been documented in the 

literature; for example, gabapentin attenuated the analgesic actions of the non-selective 

COX inhibitor metamizol in the mouse tail-flick assay, but did not affect the 

antinociceptive effects of metamizol in the mouse hot-plate assay.171  The different 

effects observed in the tail-flick and hot-plate assays can be explained by different 

receptor subpopulations (spinal versus supraspinal, respectively) or different receptor 

mechanisms.143  In the current study, the ED50 dose of clonidine (7; 1.0 mg/kg) was 

selected so that potentiation or attenuation could be observed when clonidine (7) was 

co-administered with varying doses of the 5-HT3 receptor agents mCPBG (20) and 

SR57227A (22) in the hot-plate assay.  mCPBG (20; 0.3-10 mg/kg) significantly 

attenuated the antinociceptive effect (AD50 = 0.8 mg/kg) of clonidine (7; Figure 29), but 

SR57227A (22; 0.3-10 mg/kg) failed to potentiate or attenuate the actions of clonidine 

(7; Figure 37) in the hot-plate assay.  Different pharmacological effects were observed 

among these three 5-HT3 receptor agents; in combination studies with clonidine (7; 1.0 

mg/kg), the antinociceptive effect was not significantly attenuated (i.e., not statistically 

significant) by MD-354 (21), significantly attenuated by mCPBG (20), and not affected 

by SR57227A (22).33   

A high dose of MD-354 (21; 30 mg/kg) slightly antagonized the analgesic action 

of the ED50 dose of clonidine (7) in the hot-plate assay.33   Therefore, the results in the 

mCPBG [20; structurally similar to MD-354 (21)]/clonidine (7) combination studies were 

not completely unexpected (Figure 29).  MD-354 (21) behaves as a partial agonist at 5-
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HT3 receptors and, therefore, could be producing its inhibitory actions via an agonist or 

antagonist mechanism.  In contrast, mCPBG (20) displays full agonist action at 5-HT3 

receptors (mouse and human).160  As a result, it is likely that the inhibitory action of 

clondine’s (7) antinociceptive effects by mCPBG (20) and MD-354 (21) in the hot-plate 

assay is mediated by 5-HT3 receptor agonism.   

If mCPBG (20) attenuates the analgesic actions of clonidine (7) in the mouse hot-

plate assay via a 5-HT3 receptor agonist mechanism, why doesn’t administration of 

SR57227A (22) also inhibit the analgesic effect of clonidine (7) in the same assay?  

Even though inhibition by SR57227A (22) would further support a 5-HT3 receptor 

agonist mechanism, the lack of attenuation by SR57227A (22) was not too surprising 

because, as discussed in the Background section, 5-HT3 receptor agonists have 

notoriously produced varying results in nociceptive animal models (Table 4).  For 

example, mCPBG (20; i.t.) produced saline-like effects, whereas a second 5-HT3 

receptor agonist 2-methyl-5-HT (17; i.t.) produced antinociceptive effects in the tail-flick 

assay.26,28  The reason for these varying effects among 5-HT3 receptor agonists 

remains unclear.  It is possible that 5-HT3 receptor subtype selectivity alters the 

pharmacological effects of these agents.  Two known functional 5-HT3 receptor types 

have been identified: homopentameric 5-HT3A receptors and heteropentameric 5-

HT3AB receptors, which are composed of two 5-HT3A and three 5-HT3B receptor 

subunits.21,97-101  Also, there are three other known 5-HT3 receptor subunits (5-HT3C, 5-

HT3D, and 5-HT3E) but, to date, they have unknown function.  Unfortunately, the lack 

of information regarding 5-HT3 receptors, and the affinity of agents at each of those 

populations, might lead to ambiguous interpretation of pharmacological results. 
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Following the combination studies that examined the role of 5-HT3 receptors in 

the analgesia potentiation of clonidine (7), the role of α2-ARs was investigated.  It was 

already determined in mechanistic studies that mCPBG (20)-potentiation of the 

antinociceptive effect of an “inactive” dose of clonidine (7) in the tail-flick assay, at least 

in part, involves a 5-HT3 receptor agonist mechanism.  Next, mechanistic studies 

involving α2-AR antagonists were conducted in the mouse tail-flick assay.  The non-

selective α2-AR antagonist yohimbine (11; 0.01-6.0 mg/kg) blocked the antinociceptive 

potentiation of clonidine (7) by mCPBG (20) in a dose-dependent manner (Figure 27).  

This suggests that the combination is not only acting via a central 5-HT3 receptor 

agonist mechanism, but also affects the analgesic properties of clonidine (7) via α2-ARs.   

α2-AR involvement was also observed in the potentiation of clonidine (7) by MD-

354 (21); the non-selective, α2A-, and α2B-AR preferential antagonists [yohimbine (11), 

BRL44408 (15), and imiloxan (12), respectively] blocked the analgesia-potentiating 

effect produced by MD-354 (21).31  MD-354 (21) binds to all three α2-AR subtypes with 

variable affinity (Ki = 25-4,700 nM; refer to Table 5) and functionally behaves as a partial 

agonist at α2A-ARs [IA = 36% of NE (1) activity; EC50 = 1,588 nM].31  Additionally, MD-

354 (21) seems to behave as a partial agonist at α2B- and α2C-ARs [IA = 31 and 41% of 

NE (1) activity, respectively], but its potency is very low (EC50 > 10,000 nM for both 

subtypes).31  On the other hand, although subtype selectivity was not examined, 

mCPBG (20) has low affinity at α2-ARs (Ki = 1,445 nM) and seems to behave as an α2-

AR antagonist.149  In this study, mCPBG (20) binding affinity was based on rat brain 

cortex homogenates and the functional data was based on ex vivo mouse studies, in 

which mCPBG (20) facilitated NE (1) release in mouse cerebral cortex.149  Although 
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mCPBG (20) did produce α2-AR antagonist actions at high doses, its potency was 

rather low compared to the yohimbine (11) stereoisomer rauwolscine (i.e., rauwolscine 

had 340-fold greater potency than mCPBG (20)].149 

There are two possible ways of interpreting the mechanistic studies involving α2-

AR antagonists co-administered with the MD-354/clonidine (21/7) combination.  The 

analgesic attenuation could be due to blocking the effect of clonidine (7) or MD-354 

(21).  Conversely, since mCPBG (20) seems to behave as an α2-AR antagonist, the 

analgesic attenuation observed in mechanistic studies utilizing the non-selective α2-AR 

antagonist yohimbine (11) in combination with mCPBG (20) and clonidine (7) is most 

likely due to blocking the effect of clonidine (7).  mCPBG (20) might potentiate the 

antinociceptive effect of clonidine (7) in the hot-plate assay if clonidine (7) is able to act 

at α2-ARs (i.e., it is essential for clonidine (7) to act at α2-ARs).  In addition, because 

mCPBG (20) has low binding affinity for α2-ARs (Ki = 1,445 nM) compared to its affinity 

for 5-HT3 receptors (Ki = 17 nM), it is unlikely that the pharmacological effects of 

mCPBG (20) are due to interaction at α2-ARs.  Nevertheless, it is important to note that, 

to the best of our knowledge, the binding affinity and functional activity of mCPBG (20) 

at the three α2-AR subtypes have not been examined.  It is possible that the low affinity 

data obtained from rat brain cortex homogenates does not depict the affinity of mCPBG 

(20) at all α2-AR subtypes (e.g., it is possible that mCPBG (20) displays high affinity at 

α2A-AR, but not α2B- or α2C-ARs).149 

Previous literature indicates that the antinociceptive effects of clonidine (7) are 

due to an α2A-AR agonist mechanism.172,173  And although clonidine (7) binds to all three 

subtypes of α2-ARs with similar affinity (refer to Table 2), it behaves as a partial agonist 
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at α2A-ARs and as a very weak partial agonist at α2B- and α2C-ARs [%Emax = 62, 36, and 

37% of NE (1) activity; EC50 = 23, 220, and >10,000 nM, respectively; Pohjanoksa and 

Scheinin, unpublished data]. 

The non-selective α2-AR agonist TDIQ (6), which is devoid of 5-HT3 receptor 

affinity, was evaluated in the mouse tail-flick assay. This agent produced no 

antinociceptive effects when administered alone, but dose-dependently potentiated the 

analgesic effect of an “inactive” dose of clonidine (7; Figures 39 and 38, respectively).  

In fact, an isobolographic analysis of a 3:1 and 12:1 fixed ratio dose of TDIQ (6) and 

clonidine (7) indicated a synergistic potentiation of the antinociceptive effect (Figure 47).  

Activation of one receptor mechanism presumably produces a simply additive effect 

(i.e., the co-administration of the combination should produce the theoretical effect 

based on the individual potencies of the two drugs).174,175  Most reports conclude 

synergy is due to multiple mechanisms (i.e., two drugs acting via different sites, whether 

that is different anatomical sites or different receptors); a recent study indicated that 

clonidine (7) and dexmedetomidine produced antinociceptive synergy in mice via a dual 

receptor mechanism (agonist action at α2A- and α2C-ARs).176  Therefore, the supra-

additive effect (or synergistic effect) produced by TDIQ (6) in combination with clonidine 

(7) suggests multiple mechanisms.  For example, the analgesic synergy produced by 

TDIQ (6) and clonidine (7) could be mediated by an α2A-AR agonism as well as either a 

α2B- or α2C-AR agonism.   

One therapeutic advantage to synergistic drug effects is a decrease in drug 

doses.  This reduced drug dose(s) can theoretically produce efficacy of the desired 

effect, but reduce efficacy in producing side effects.  In the abovementioned 
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combination studies [e.g., TDIQ (6) and clonidine (7)], a desired antinociceptive effect 

occurred without affecting clonidine’s (7) sedative side effect.  That is, a reduced dose 

of clonidine (7; 0.25 mg/kg) in combination with TDIQ (6) produced analgesic actions 

without influencing locomotor activity. 

To further understand the mechanism(s) underlying these actions, combination 

studies were conducted.  The mechanistic studies with TDIQ (6) produced similar 

results compared to MD-354 (21); that is, the α2A-, α2B-, and α2B/2C-AR preferential 

antagonists [BRL44408 (15), imiloxan (12), and ARC-239 (14), respectively] significantly 

blocked the analgesia-potentiating effect of an “inactive” dose of clonidine (7) by TDIQ 

(6) in the tail-flick assay (Figures 42, 43, and 44, respectively).  In [35S]GTPγS binding 

studies, TDIQ (6) behaved as a weak partial agonist at α2A-, α2B-, and α2C-ARs [IA = 

22%, 18%, and 22% of NE (1) activity; EC50 = 1,300, >10,000, and 6,230 nM, 

respectively; Pohjanoksa and Scheinin, unpublished data].  Although TDIQ (6) produces 

partial agonist action at all three subtypes of α2-ARs, its efficacy (or intrinsic activity) is 

lower than that of clonidine [7; IA = 62%, 36%, and 37% of NE (1) activity at α2A-, α2B-, 

and α2C-ARs; Pohjanoksa and Scheinin, unpublished].  Due to its lower intrinsic activity, 

TDIQ (6) may behave as an α2-AR antagonist when co-administered with clonidine (7).  

In fact, previous imiloxan (12) studies suggest that α2B-AR antagonism might account 

for the potentiation of the antinociceptive effects of clonidine (7) in the mouse tail-flick 

assay (refer to Table 12).31 

Based on these in vivo results, it is difficult to determine which α2-AR subtype is 

responsible for the analgesic potentiation observed in the TDIQ/clonidine (6/7) 

combination.  At this time, none of the α2-AR subtypes can be ruled out.  It is possible 
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that one or more of the receptor subtypes plays a role in this potentiating effect.  The 

results are difficult to interpret because the available α2-AR antagonists, to date, are 

only preferentially selective.  For example, BRL44408 (15) binds to all three α2-AR 

subtypes (Ki: α2A = 5.7, α2B = 651, and α2C = 150 nM).  Even though BRL44408 (15) 

shows preferential binding affinity at α2A-ARs (e.g., 26-fold over α2C-ARs), it is possible 

that BRL44408 (15) behaves as an α2C-AR antagonist at the doses evaluated and, 

therefore, is able to block the effect of an α2C-AR agonist.   

Similar to the results obtained in the tail-flick study (Figure 39), TDIQ (6) 

produced saline-like effects in the hot-plate assay when administered alone (Figure 48).  

However, unlike the potentiating effect observed in the tail-flick assay (Figure 40), when 

TDIQ (6) was co-administered with clonidine (7; 1.0 and 2.0 mg/kg doses), analgesic 

attenuation occurred (Figures 50 and 51).  In summary, TDIQ (6) potentiated the 

antinociceptive actions of clonidine (7) in the mouse tail-flick assay, but blocked 

clonidine’s (7) effect in the hot-plate assay.   

Opposing results in antinociceptive animal models have been previously 

described; for example, gabapentin augmented the antinociceptive effects of morphine 

in the hot-plate assay, but attenuated morphine’s effect in the tail-flick assay.171  As 

discussed earlier, these contrasting results could be due to spinal versus supraspinal 

receptor activation.  It is generally thought that the tail-flick response is due to a spinal 

response, whereas antinociceptive effects produced in the hot-plate assay are mostly 

due to a supraspinal response.143  Therefore, it is possible that TDIQ (6) might attenuate 

the antinociceptive effect of clonidine (7) in the mouse hot-plate assay via a supraspinal 

mechanism, but its analgesia-potentiating effect in the tail-flick assay is mediated by 
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spinal receptors.  Conversely, there is some controversial data suggesting that this is 

not the case (i.e., tail-flick responses may be due to both spinal and supraspinal 

activation).143   

mCPBG (20) and TDIQ (6) showed similar pharmacological effects in the two 

thermal nociceptive animal models:  analgesic potentiation of an inactive dose of 

clonidine (7; 0.25 mg/kg) in the tail-flick assay and analgesic attenuation of the ED50 

dose of clonidine (7; 1.0 mg/kg) in the hot-plate assay.  It seems unlikely that mCPBG 

(20) and TDIQ (6) share the exact same mechanism of action because of a dissimilar 

binding profile; mCPBG (20) binds with high affinity at 5-HT3 receptors (Ki = 17 nM), 

whereas TDIQ (6) binds with high affinity at α2-ARs (Ki: α2A = 75, α2B = 97, α2C = 65 

nM).53,111,113  On the other hand, the non-selective α2-AR antagonist yohimbine (11) 

blocked the analgesic potentiation of clonidine (7) by mCPBG (20) which indicates α2-

AR involvement in the tail-flick assay (Figure 27).   

In previously published hot-plate studies, clonidine’s (7) antinociceptive actions 

were augmented by the α2-AR agonist guanabenz (9; s.c.) in rats and blocked by the α2-

AR antagonist idazoxan (i.p., i.c.v., or i.t) in mice.177,178  Therefore, it seems reasonable 

that TDIQ (6) may be attenuating clonidine’s (7) analgesic actions in the hot-plate assay 

via an α2-AR antagonist mechanism. 

In summary, combination studies with clonidine (7) and various agents [MD-354 

(21), mCPBG (20), SR57227A (22), and TDIQ (6)] have provided evidence of novel pain 

mechanisms.  Clonidine (7), which is a potent analgesic agent, also produces undesired 

side effects such as sedation.  Three of the four agents mentioned above [MD-354 (21), 

mCPBG (20) and TDIQ (6), but not SR57227A (22)] were able to potentiate the 
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antinociceptive effects of an “inactive” dose (i.e., a dose that does not produce 

antinociceptive effects when administered alone) of clonidine (7) in the mouse tail-flick 

assay.  Furthermore, this analgesia-potentiating effect seems to be selective because 

all three combinations failed to alter the sedative properties of clonidine (7).  

Specifically, the locomotor “action” of the combinations was similar to that of clonidine 

(7; 0.25 mg/kg) when administered alone.  Not only does this provide support for a 

selective potentiating effect, but it also indicates that the analgesic potentiation by MD-

354 (21), mCPBG (20) or TDIQ (6) is unlikely due to a central depressant effect.  When 

reviewing the mechanistic studies of all three agents, it seems that 5-HT3 receptor and 

α2-AR agonism can potentiate the analgesic effects of clonidine (7) without affecting its 

sedative properties.  To date, it is unclear which α2-AR subtype(s) is involved in this 

potentiating effect.  One major disadvantage of studying α2-AR agents is the lack of 

subtype-selective agents; advancement in this area should enhance our current 

understanding of α2-AR pharmacology. 

 

B.  Synthesis 

 

1.  meta-Chlorophenylbiguanide Hydrochloride (20) 

 

The hydrochloride salt of mCPBG (20) was synthesized according to a previously 

published procedure (Scheme 1).179  The free base of meta-chloroaniline (40) was 

dissolved in absolute EtOH and the hydrochloride salt (41) precipitated upon addition of 

a 35 M solution of HCl/Et2O.  Compound 41 was purified by recrystallization from 
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acetone (3x); mp (compared to lit180 mp) and tlc analysis with an authentic sample 

supported its identity and purity.  Cyanoguanidine and m-chloroaniline hydrochloride 

(41) were allowed to stir at reflux for 4 h and then cooled to 10 °C.  The resulting 

precipitate was collected by filtration, washed with Et2O, and recrystallized twice from 

H2O to afford mCPBG hydrochloride (20).  Product characterization of 20 (mp, 1H NMR, 

and IR) corresponded to previously reported data.181 

 

Scheme 1.a 
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aReagents and conditions:  i)  HCl/Et2O, absolute EtOH, -10 °C; ii)  cyanoguanidine, 

H2O, reflux for 4 h, 10 °C for 24 h. 

 

 The prepared hydrochloride salt of mCPBG (20) was used in the 

abovementioned pharmacological assays (tail-flick, hot-plate, and locomotor activity 

assays). 

 

 2.  2-Amino-7-chloroquinoline Hydrochloride (28) 

 

Compound 28 was prepared in a five-step synthesis starting with the 

commercially available toluene analog 42 (Scheme 2).  Partial dissociation of DMF-

DMA occurred in DMF and deprotonation of 42 occurred in the presence of pyrrolidine; 
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the resulting N,N-dimethylimmonium ion and toluene (42) anion reacted and upon 

elimination of a molecule of methanol, 43 was produced in quantitative yield.  Oxidative 

hydrolysis of enamine 43 using NaIO4 led to the formation of benzaldehyde 44.  

Compound 44 was converted to 45 upon addition of NaH, diethyl 

cyanomethylphosponate and anhydrous DMF.  In the last step, 45 was cyclized with 

SnCl2·2H2O in refluxing absolute EtOH; the resulting free base (28) was converted to a 

hydrochloride salt.  

 

Scheme 2.a 
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aReagents and conditions:  i)  DMF·DMA, pyrrolidine, DMF, N2, 110 °C for 1h; ii)  NaIO4, 

H2O, DMF, rt for 1.5 h; iii)  diethyl cyanomethylphosphonate, anhydrous DMF, 0 °C for 5 

min; iv)  SnCl2·2H2O, absolute EtOH, reflux for 2.5 h; v)  HCl/Et2O, MeOH. 

 

In the third step of Scheme 2, the isomers of 45 were not separated and purified 

(i.e., the mixture of (E/Z)-45 was used in the final step without further purification).  The 

reaction (step iv; Scheme 2) was monitored by tlc analysis and once the starting 

material disappeared, the reaction was worked-up.  The resulting crude product 
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consisted of two compounds (Rf = 0.5 and 0.9; eluent: CH2Cl2/CH3OH/NH4OH = 

9:1:0.1).  Following column chromatography, both compounds were fully characterized.  

Based on 1H NMR and IR analyses, only (Z)-45 cyclized to form the free base of 28 (Rf 

= 0.5) as depicted in Scheme 3.  Addition of Sn2Cl2·2H2O to (E)-45 simply reduced the 

nitro group to an amine, which resulted in the formation of compound 46 (Rf = 0.9) as a 

light-brown solid (Scheme 3).   

 

Scheme 3.a 
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aReagents and conditions:  i)  SnCl2·2H2O, absolute EtOH, reflux for 2.5 h. 

 

Although it was easy to separate 28 and 46 by column chromatography and to 

subsequently characterize each compound, further analysis was necessary to explain 

the reaction mechanism.  In the first attempt to clarify the results, compound (E/Z)-45 

was reacted with SnCl2∙2H2O in absolute EtOH at room temperature, rather than at 

reflux.  It was thought that at the reduced temperature, (E/Z)-45 would be simply 
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reduced into (E/Z)-3-(2-amino-4-chlorophenyl)acrylonitrile (46) isomers.  However, 

based on tlc analysis, the same two compounds were produced (i.e., compounds that 

fluoresced under UV light at Rf = 0.5 and 0.9, which corresponded to 28 and 46, 

respectively).  Also, time did not seem to play a role in the reaction because the reaction 

mixture was allowed to stir for 1 week at room temperature followed by 2 days at reflux 

and the tlc remained the same. 

Since it was speculated that one isomer was reduced to an amine while the other 

isomer was reduced and then cyclized, the mixture of 45 isomers were separated via 

combi-flash chromatography (eluent: hexanes/EtOAc = 1:0 to 1:1 over 20 min).  

Unfortunately, only the Z-isomer (45) was completely purified.  In a small-scale reaction, 

(Z)-45 reacted with SnCl2∙2H2O at room temperature to afford only one product (Rf = 

0.5).  That is, the Z-isomer was reduced and subsequently cyclized to form compound 

28.  Since two products (46 and 28) were formed when (E/Z)-45 was added to the 

reaction, the E-isomer (compound 46) must be unable to cyclize under the experimental 

conditions.  IR analysis aided in the structural characterization; compounds 45 and 46 

indicated a nitrile moiety (peak at 2215 cm-1) whereas compound 28 showed only a 

baseline signal in the general nitrile region (2200-2300 cm-1). 

 

 3.  2-Amino-7-chloro-1,2,3,4-tetrahydroquinoline Hydrochloride (31) 

 

When planning the synthesis of compound 31, it was thought that it could be 

prepared from 28 via catalytic hydrogenation (Scheme 4).  Careful attention was given 

to the selection of catalyst because of the concern of dehalogenation of the 7-position 
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chloro group.  For example, palladium and nickel catalysts have previously been used 

for the partial hydrogenation of quinolines to 1,2,3,4-tetrahydroquinolines.182,183  

However, these catalysts have also been involved with dehalogenation of aryl 

halides,184,185 such as the 7-chloro group in 28.  Due to these concerns, platinum oxide 

was chosen for the catalytic hydrogenation reaction (Scheme 4).  In fact, the chemical 

literature reported catalytic hydrogenation (conditions: PtO2, AcOH, H2, rt) of a similar 

compound (5,6-dichloro-2-methylquinoline).186  Therefore, dehalogenation of 28 should 

not occur under these experimental conditions (attempt #1; Scheme 4). 

 

Scheme 4.a 

N

NH2

Cl
28

HN

NH2

Cl
31

X

 

aReagents and conditions for attempts #1-3:  1) PtO2, AcOH, H2, 15 psi (18 h); 30 psi 

(24 h); 45 psi (24 h); 60 psi (24 h); 2) PtO2, AcOH, HOCl4, H2, 60 psi (24 h); 3) Rh/Al2O3, 

MeOH, H2, 50 psi (24 h). 

 

The experimental procedure reported by Ishikawa and co-workers was first 

employed in a trial reaction before attempting to hydrogenate 28.186  In the model 

reaction, a solution of isoquinoline in AcOH was partially hydrogenated with PtO2 under 

H2 (50 psi) to afford 1,2,3,4-tetrahydroisoquinoline.  Both of these agents (starting 

material and product) were available in our laboratory and therefore, the reaction was 

monitored by tlc; tlc analysis suggested complete conversion within 18 h (i.e., UV light 

detected only the product).  Although other laboratories have successfully reduced the 
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pyridine ring of heterocyclic systems (e.g., quinoline and isoquinoline analogs) with 

these conditions, attempts to reduce 28 to 31 were unsuccessful.   

In the first attempt, 28 was subjected to H2 under atmospheric pressure (≈ 14.7 

psi) for 18 h and no reaction occurred (i.e., tlc analysis indicated only starting material).  

Subsequently, the pressure was altered to determine if it affected the reaction; 

increased H2 pressure (30, 45, and 60 psi) on the Parr hydrogenator for 24 h also 

resulted in no reaction.   

Since time and pressure seemed to have no effect on the reaction, modifying the 

reagents was considered.  In the second attempt, a trace amount of perchloric acid was 

added to the reaction mixture because strong protic acids can act as promoters 

(substance that increases catalytic activity).187  The addition of perchloric acid had no 

effect on the reaction (attempt #2; Scheme 4). 

In the third attempt to reduce the pyridine ring of 28, the catalyst was changed to 

Rh/Al2O3, which was based on a published experimental procedure for the selective 

hydrogenation (i.e., selective reduction of the pyridine and not the benzene ring) of 6-

bromoquinoline as well as 2-substituted quinoline analogs such as 2-methylquinoline 

with catalyst Rh/Al2O3 and solvent MeOH in the presence of H2 under increased 

pressure (50 bar; ≈ 725 psi).188  These analogs were interesting cases because the 

reaction worked in the presence of a halogen substituent and a substituent at the 2-

position of quinoline.  It is important to note, that conversion of 2-methylquinoline to 

1,2,3,4-tetrahydro-2-methylquinoline was only 40% in 22 h whereas after 1 h, 6-

bromoquinoline was consumed.188  Although there was 100% conversion observed in 

the 6-bromoquinoline reaction, two products were formed: the desired product 6-bromo-
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1,2,3,4-tetrahydroquinoline (82%) and the debrominated product 1,2,3,4-

tetrahydroquinoline (18%).188  In our reaction, 28 was subjected to similar conditions 

(Rh/Al2O3, MeOH, H2, 50 psi) for 24 hours, but only starting material was detected.  It is 

possible that 28 would undergo hydrogenation at increased pressure (e.g., 50 bar as in 

the literature procedure), but unfortunately we do not have that capability in our 

laboratory. 

In addition to the PtO2 experimental (attempt #1; Scheme 4), Ishikawa and co-

workers described the partial hydrogenation of the quinoline anolog, 6-fluoro-2-methyl-

5-(4-methyl-1-piperizinyl)quinoline, with 5% platinum on carbon under atmospheric H2 in 

high yield (91%).186  Since 28 was prepared in small quantity, trial reactions were first 

done with the commercially available dechlorinated starting material (47; 2-

aminoquinoline).  Unfortunately, when 47 was exposed to the same conditions, only 

starting material fluoresced under UV light (attempt #1; Scheme 5). 

 

Scheme 5.a 

N

NH2

47

HN

NH2

48

X

 

aReagents and conditions for attempts #1 and 2:  1) 5% Pt/C, AcOH, H2, 15 psi (24 h); 

2) NaCNBH3, BF3∙OEt2, MeOH, reflux. 

 

There is another interesting hydrogenation reaction reported in the literature 

which used NaCNBH3 in the presence of boron trifluoride etherate in refluxing MeOH to 
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selectively reduce the nitrogen-containing ring in quinoline derivatives.189  In a last 

attempt to convert 2-aminoquinoline (47) to 2-amino-1,2,3,4-tetrahydroquinoline (48), 

the same conditions were applied to 47, but over the course of 9 h no appreciable 

product formed (reaction monitored by tlc analysis: no products fluoresced under UV 

light and only a very faint spot near the baseline appeared, but over time this spot did 

not increase in intensity). 

 To our knowledge, there is no reported reactions involving the reduction of a 2-

aminoquinoline analog to its 1,2,3,4-tetrahydro derivative.  However, Moon and Hsi tried 

to directly hydrogenate 3-aminoquinoline.190  Although it is stated that the direct 

hydrogenation of 3-aminoquinoline to 3-amino-1,2,3,4-tetrahydroquinoline was 

unsuccessful, no details of the reaction conditions (e.g., reagents, time, temperature, 

etc.) were provided.190  On the other hand, they were able to selectively reduce the 

pyridine ring following acylation of the amine in the 3-position.190  Subsequently, the 

crude amide was hydrolyzed to afford 3-amino-1,2,3,4-tetrahydroquinoline.190  Due to 

these results, attempts were made to reduce 7-chloro-2-formamidoquinoline (49) in the 

same manner (Scheme 6).   

Scheme 6.a 
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NH2
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X

 

aReagents and conditions:  i) Ac2O, AcOH, THF, N2; ii) PtO2, AcOH or MeOH, H2, 50 psi 

(24-60 h); iii) HCl/EtOH, 70 °C. 
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Compound 49 was synthesized by acylating 28 with acetic anhydride (Scheme 

6).  Unlike the reported results with the 3-formamido derivative, 49 did not reduce to 50.  

Various experimental conditions were modified to determine if any affected the reaction 

(e.g., solvents: AcOH and MeOH, time, and pressure).  Though most experimental 

modifications did not seem to change the reaction progress as monitored by tlc analysis 

(i.e., only starting material was detected), time appeared to alter the tlc.  For example, 

after 3 d on the Parr hydrogenator (50 psi), there were two faint product spots detected 

on tlc [eluent: EtOAc/MeOH = 20:1; starting material 49 (Rf = 0.5) and products (Rf = 0.3 

and 0.8)], but these spots did not increase in intensity and the starting material did not 

decrease in intensity after an additional 4 d on the Parr hydrogenator.  Therefore, the 

reaction was stopped after a total of 7 d and the two minor products were purified by 

preparative tlc (eluent: EtOAc/MeOH = 20:1).  An insufficient amount was collected by 

preparative tlc to characterize these compounds. The reaction was repeated on a larger 

scale, but no products were formed.  Synthesis of 31 was abandoned. 

 

4.  3-Amino-6-chloroisoquinoline Hydrochloride (29) 

 

Compound 29 was prepared in a three-step synthesis.  First, a nucleophilic 

aromatic substitution of the commercially available starting material 4-chloro-2-

fluorobenzonitrile (51) occurred resulting in a substitution of the aryl halide with a 

benzylic nitrile.  Specifically, the sodium anion of ethyl cyanoacetate reacted with the 2-

fluoro group of 51 to produce an ester intermediate and upon refluxing the ester in 

water, decarboxylation occurred to yield compound 52.  The di-nitrile product was 
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purified by recrystallization from Et2O (identical mp compared to lit.191 mp).  Cyclization 

of 52 was achieved by adding a solution of HBr in AcOH, allowing the reaction mixture 

to stir for 1 h and precipitating compound 53 with Et2O.  The resulting crude product 

was neutralized, dried and purified via column chromatography.   

Scheme 7.a 

Cl
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CN

Cl
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aReagents and conditions:  i)  ethylcyanoacetate, NaH, DMSO, 0 °C to rt, 30 min., 90 °C 

for 90 h, water, reflux, 8 h; ii)  HBr, AcOH, Et2O; iii)  n-BuLi in hexanes, anhydrous THF, 

N2, -70 °C, 30 min, absolute EtOH. 

 

In the last step of Scheme 7, selective debromination in the 1-position was 

attempted; such selective debromination has been previously done on a similar 

compound, 3-amino-1,6-dibromoisoquinoline.192  However, when a mixture of 3-amino-

1-bromo-6-chloroisoquinoline, ammonium formate, tetrakis(triphenyl phosphine) 

palladium and DMF was heated to 50 °C in a sealed tube, the tlc analysis after only 8 

hours (literature procedure reported 48 hour reaction) displayed a very faint product 

spot and approximately 8 additional spots.  It was apparent that purification of each 

product would be very difficult.   

Therefore, in a second attempt, a known catalyst-free reaction was used to try to 

synthesize 29.  In this literature reported procedure, selective debromination of both 1-

bromo-3-chlorobenzene and 1-bromo-4-chlorobenzene occurred in high yield 

(approximately 98%).193  Nevertheless, when 53 was reacted with LiAlH4 in the 
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presence of DME for 18 hours (submerged in a ultrasound cleaner), no reaction 

occurred (only starting material fluoresced on the tlc plate and 1H NMR indicated 

starting material only). 

In the last attempt to selectively debrominate, compound 53 was reacted with n-

butyllithium (2.5 M in hexanes) under a N2 atmosphere and followed by ethanolic 

quenching.  This reaction scheme was successfully used to selectively debrominate the 

1-position bromo group of 1,3-dibromoisoquinoline.194  Successful synthesis of the 

debrominated product 29 occurred when using the procedure of Muchowski et al.,194 but 

the product was not without impurities.  The tlc analysis showed two products; the major 

spot was 29 and the minor spot was presumably the des-chloro analog of the the 

product or the des-chloro analog of the starting material (i.e., either 3-aminoisoquinoline 

or 3-amino-1-bromoisoquinoline, respectively).  Upon recrystallization from benzene, 

pure product 29 as a free base was obtained (mp 232-234 °C) and confirmed by 

elemental analysis.  An attempt was made to convert the free base to an HCl salt, 

however elemental analysis indicated that it was not a pure HCl salt of 29. 

 

 5.  3-Amino-6-chloro-1,2,3,4-tetrahydroisoquinoline hydrochloride (32) 

 

 Similar to the synthesis of 31, attempts to partially hydrogenate 32 were 

unsuccessful. 
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Scheme 8.a 
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aReagents and conditions:  i)  PtO2, MeOH, H2, 50 psi. 

 

Even after reacting 29 with H2 (50 psi) in the presence of a platinum catalyst for 3 

days, only starting material was detected in the reaction mixture based on tlc and 1H 

NMR analyses.  The route was abandoned. 

 

 6.  2-Amino-7-chloronaphthalene Hydrochloride (30) 

 

 Compound 30 was prepared according to literature procedures for similar 

compounds (Scheme 9).195-199   
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Scheme 9.a 
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aReagents and conditions:  i)  H2SO4, HNO3, 20 °C to 60 °C; ii)  Cu, quinoline, reflux; iii)  

MeOH, reflux, NaSH, MeOH/H2O (1:2), reflux; iv)  NaNO2, H2SO4, AcOH, 0 °C;  v)  

Cu(I)Cl, HCl, 0 °C;  vi)  PtO2, H2, absolute EtOH, rt;  vii)  absolute EtOH, HCl (g), 0 °C. 
 

Addition of nitric acid selectively nitrated the starting material 56 at the meta 

positions to afford 3,6-dinitro-1,8-napthalic anhydride (57).  Decarboxylation of the 

anhydride moiety in a quinoline solution with copper powder, as in step ii, was first 

described by Shepard et al. in 1930.200  Although the mechanism is not completely 

understood, the literature suggests that quinoline’s basicity and high boiling point 

facilitates carboxylate anion formation by withdrawing d-electrons from the copper 

catalyst.201,202  In the current case, the decarboxylated product 58 was partially reduced 

to 2-amino-7-nitronaphthalene (59) by the addition of approximately one equivalent of 

sodium hydrosulfide.  In the fourth and fifth step of Scheme 9, the aryl amine was 

converted to the aryl chloride via a Sandmeyer reaction.  In the last step, reduction of 60 

to 2-amino-7-chloronapthalene (30) occurred under mild conditions (PtO2, rt, 
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atmospheric H2) in order to reduce the possibility of dehalogenation; subsequently the 

free base was converted to a hydrochloride salt via the addition of HCl gas to an 

ethanolic solution. 

 

 7.  2-Amino-7-chlorotetralin Hydrochloride (33) 

  

Compound 33 was prepared according to a literature procedure for similar 

compounds (Scheme 10).203,204,206 

 

Scheme 10.a 

Cl Cl Cl

O
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NH2 HCl

61 62 63 33

i ii iii,iv

COOH COCl

 

aReagents and conditions:  i)  SOCl2, CH2Cl2, reflux; ii)  CH2Cl2, AlCl3, C2H4 (g), -10 °C 

to 0 °C, H2O; iii)  NaBH3CN, NH4OAc, MeOH, rt; iv)  absolute EtOH, HCl/EtOH, 0 °C. 

 

 The commercially available phenylacetic acid 61 was converted to the 

corresponding acid chloride 62 upon the addition of thionyl chloride and was 

subsequently purified under reduced pressure distillation (0.5 Torr, bp 97-103 °C).  In 

the second step (Friedel-Crafts acylation-cycloaddition reaction207), purification of AlCl3 

via prior sublimation improved the yield of the reaction.  A methylene chloride solution of 

compound 62 was added to a suspension of AlCl3 in CH2Cl2 at -10 to 0 °C under inert 

conditions (Scheme 10, step ii); ethylene gas was bubbled into the reaction mixture for 
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30 min, which caused the reaction temperature to slightly increase to 5-10 °C.  Although 

no starting material remained, two products were formed due to two possible cylclization 

reactions (Scheme 11).   

 

Scheme 11.a 

Cl Cl
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aReagents and conditions:  i)  CH2Cl2, AlCl3, C2H4 (g), -10 °C to 0 °C, H2O. 

 

Column chromatography was performed to separate the two tetralones: 5-chloro-

β-tetralone (64; 15%) and 7-chloro-β-tetralone (63; 10%); tlc eluent hexanes/EtOAc = 

5:1 (Rf = 0.6, purple tlc stain and Rf = 0.5, beige tlc stain, respectively).  There were 

other minor differences between the two products such as 5-chloro-β-tetralone (64) was 

an oil whereas 7-chloro-β-tetralone (63) was a low melting point solid (mp 37-38 °C).  

Structural characterization of the two products was determined by H1 NMR.  Although 

both products showed three aromatic protons in the H1 NMR spectrum, there were 

differences in the chemical shifts and splitting patterns. 

To synthesize the desired target compound, 63 was converted to 33 via reductive 

amination followed by hydrochloride salt formation (Scheme 10). 
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8.  2-Amino-5-chlorotetralin Hydrochloride (65) 

  

Compound 65 was prepared via the same synthetic route as 33 (Scheme 12). 

 

Scheme 12.a 

O NH2 HCl

64 65

i, ii

Cl Cl

 

aReagents and conditions:  i)  NaBH3CN, NH4OAc, MeOH, rt; ii)  absolute EtOH, 

HCl/EtOH, 0 °C. 

 

 The starting material 64 was synthesized from the previous reactions (Schemes 

10 and 11).  And similar to the preparation of 2-amino-7-chlorotetralin (33), reductive 

amination of β-tetralone 64 produced 2-amino-5-chlorotetralin hydrochloride (65; 

Scheme 12). 

 

 9.  2-Amino-5,7-dichloro-3,4-dihydroquinazoline Hydrochloride (38) 

  

Compound 38 was prepared according to a literature procedure for similar 

compounds (Scheme 13).208-210 
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Scheme 13.a 
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aReagents and conditions:  i)  CrO3, gl. AcOH, Ac2O, 90 °C; ii)  S-methylthioisourea 
sulfate, Na2CO3, aq. MeCN (80%), reflux to rt, H2O; iii)  BH3∙THF (1M), N2, reflux; iv)  
absolute EtOH, HCl/EtOH, O °C. 
 

 The first step was based on a literature procedure,208 but unlike what was 

suggested in the literature, the reaction did not go to completion and therefore, starting 

material 66 and product 67 remained in the reaction mixture.  Prehaps due to similar 

chemical properties, purification via recrystallization (MeOH, isopropanol, or AcOH) 

and/or chromatography (column or flash) of isatin 66 and isatoic anhydride 67 was not 

successful.  A second oxidation method was attempted in which a suspension of 4,6-

dichloroisatin (66) in glacial AcOH and concentrated H2SO4 was heated to 30 °C and 

then an aqueous solution of H2O2 was added.  However, this reaction did not go to 

completion as well.   

Therefore, the next step was attempted without further purification of 67 because 

it was thought that it should be easy to purify the product by acid-base extraction.  

Compound 68 (2-amino-5,7-dichloroquinazolin-4(3H)-one) was prepared by reacting 

crude isatoic anhydride 67 with S-methylthioisourea sulfate (Scheme 13).  An acid-base 

extraction was used to purify the product 68 and recover the starting material (66) from 
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the first step.  Reduction of the amide with borane resulted in final compound 38 

(Scheme 13).  The free base was converted to a hydrochloride salt. 

 

 10.  2-Amino-3,4-dihydroquinazoline Hydrochloride (39) 

 

 The des-chloro analog of 38, 2-amino-3,4-dihydroquinazoline (39), was 

synthesized by the same procedure as described above (Scheme 14). 

 

Scheme 14.a 
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aReagents and conditions:  i)  S-methylthioisourea sulfate, Na2CO3, aq. MeCN (80%), 
reflux to rt, H2O; ii)  BH3∙THF (1M), N2, reflux; iii)  absolute EtOH, HCl/EtOH, O °C. 
 

 Commercially available isatoic anhydride 69 resulted in omission of the first step 

described in the synthesis of 38. 

Summary: compounds 20, 28, 29 (free base), 30, 33, 38, 39, and 65 were 

successfully synthesized. Binding affinity at 5-HT3 receptors has been evaluated for 

several of the abovementioned synthesized compounds.  Compounds 28, 33 and 65 

were found to lack affinity at 5-HT3 receptors; that is, Ki > 10,000 nM.  These preliminary 

binding affinity results indicate that the ring-nitrogen atoms are important for 5-HT3 

receptor binding.  5-HT3 receptor binding affinity results of the remaining synthesized 
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compounds will further evaluate the role of the nitrogen atoms and the chloro 

substiutent in MD-354 (21) and conformationally-constrained analogs of MD-354 (21) in 

5-HT3 receptor binding. 

 

C.  Molecular modeling 

 

Although MD-354 (21) shows no antinociceptive effects when administered 

alone, it potentiates the antinociceptive actions of the clinically used analgesic clonidine 

(7; non-subtype selective α2-AR agonist) in a synergistic manner in the mouse tail-flick 

assay due to an α2-AR mechanism (Table 8).31,34  Mechanisms underlying the 

analgesia-potentiating effect are thought to involve at least an α2A-AR component.31  

Radioligand binding assays indicate that MD-354 (21) binds at both low-affinity states 

(antagonist [ethyl-3H]RS-79948-197) and high-affinity states (agonist [125I]clonidine) of 

the three α2-AR subtypes (Table 5).31,34  Furthermore, functional assays show that MD-

354 (21) is a weak partial agonist at α2A-ARs, but an antagonist at α2B/2C-ARs.31  In an 

attempt to explain the binding affinity and functional activity of MD-354 (21), molecular 

models were constructed to allow an examination of its binding modes to low- and high-

affinity states of α2A-, α2B-, and α2C-ARs. 

 The α2-ARs are G protein-coupled receptors (GPCRs) which are integral 

membrane proteins that are structurally characterized by 7 transmembrane-spanning 

(TM) helices connected by intra- and extracellular loops, an amino-terminal (Nt) 

extracellular domain and a carboxyl-terminal (Ct) intracellular domain (Figures 3, 4 and 

54).  Interaction with agonists induces a conformational change in the receptor that 
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allows the receptor to associate with G proteins and initiates a signaling cascade that 

produces an effect.  Due to this conformational change in the receptor, it was necessary 

to model the “inactive” (or low-affinity) and “active” (or high-affinity) state of α2A-, α2B-, 

and α2C- ARs. 

 

 

Figure 54.  X-Ray crystal structure of the β2-AR (2RH1): TM1 (red), TM2 (orange), TM3 

(yellow), TM4 (green), TM5 (cyan), TM6 (blue), TM7 (magenta), intra- and extra-cellular 

loops (tan) bound to the inverse agonist (carazolol; gray).57 

 

 

There are no high resolution structures of α2A-, α2B-, or α2C-ARs.  Among the 

known GPCR crystal structures, the β2-AR X-ray crystal structure (pdb = 2RH1; 2.4-Å 

resolution; Figure 54) has the greatest sequence similarity to the three subtypes of α2-
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ARs.57 Therefore, this crystal structure, which is in the low-affinity state, was used as a 

template to generate homology models of α2-ARs.  This β2-AR X-ray crystal structure 

mimics the low-affinity state because an inverse agonist (i.e., carazolol) is bound to the 

receptor (i.e., an inverse agonist binds preferentially to the inactive conformation of the 

receptor).57 

 

1.  MD-354 (21) rotamers 

 

MD-354 (21) possesses a rotatable bond (bond between C1 and the aniline N), 

and exists as an indefinite number of rotamers (Figure 13).  Therefore, it was important 

to first examine the likely conformations of MD-354 (21).  There were two ways of 

examining the possible conformation(s) of MD-354 (21): (a) a systematic conformation 

search (SYBYL 8.1) and (b) determination of the conformations of arginine and 

clonidine in their X-Ray crystal structures, both of which have a guanidine moiety.   

A systematic search was conducted on MD-354 (21) to determine its lowest-

energy rotamers (Tripos Force Field, AM1; SYBYL 8.1). The systematic search was 

used to calculate the energy associated with the possible torsion angles of the rotatable 

bond between C1 and the aniline N of MD-354 (21; Figure 55a).  In general, syn (s) 

torsion angles are those between 0 and ±90° whereas anti (a) correspond to torsion 

angles between ±90 and 180°. Similarly, stereochemical conformations with a torsion 

angle between ±30 and 50° are called clinal (c) and those between 0 and 30° or 150 

and 180° are called periplanar (p).  When these terms are combined the following 

ranges of torsion angles are identified:  synperiplanar (sp) = -30 to 30°, synclinal (±sc) = 
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±30 to ±90°, anticlinal (±ac) = ±90 to ±150°, and antiperiplanar (ap) = ±150 to 180° 

(Figure 55b).  
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Figure 55.  (a)  Energy associated with the various torsion angles of the rotatable bond 

in MD-354 (21) (red: TFF; blue: AM1); (b)  the four lowest-energy rotamers of MD-354 

(21); +/– synclinal (sc) and +/– anticlinal (ac). 
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Coincidentally, the torsion angle of arginine (from the Cambridge Structural 

Database) and clonidine crystal structures212 match one (i.e., the +sc) of the lowest-

energy rotamers of MD-354 (21).  Furthermore, the mCPBG crystal structure (57.4 and 

301.9° torsion angles) displays similar torsion angles to +sc- and –sc-MD-354 (21) (65 

and 295° torsion angles).213  Due to the results from both conformational analyses, the 

four lowest-energy rotamers of MD-354 (21) were employed in the docking studies. 

 

 2.  α2A-Adrenoceptor 3D models 

 

In order to generate the inactive model of α2A-ARs, the sequences of various 

GPCRs including the human α2A-AR and β2-AR were aligned using ClustalX (other 

GPCR sequences: human muscarinic ACh M1 receptor, human vasopressin VIa 

receptor, human dopamine D3 receptor, human δ-opioid receptor and bovine 

rhodopsin) as described by Bissantz et al.214  This sequence alignment (Figure 56) is, in 

general, based on aligning the highly conserved amino acids among GPCRs (e.g., 

D3.32).  When comparing the amino acid sequence of the transmembrane regions 

(TM1-TM7) of α2A-ARs and β2-ARs, 41% are identical and 68% are similar (e.g., L and 

V residues are similar, but not identical).  Using the ClustalX alignment, the side chains 

of amino acids within the transmembrane (TM) helices of the β2-AR crystal structure 

(pbd ID: 2RH1) were mutated to mimic the α2A-AR (Sybyl 8.1). The intra- and 

extracellular loops of the homology model were based on similar protein loops (Sybyl 

8.1).   
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Figure 56.  Amino acid sequence alignment of 6 GPCRs (human muscarinic 

acetylcholine receptor M1, human vasopressin V1a receptor, human dopamine D3 

receptor, human β2 adrenoceptor, human delta-type opioid receptor and bovine 

rhodopsin receptor) and human α2A-AR (ADA2A_HUMAN); the 7 transmembrane 

helices are highlighted in yellow and highly conserved amino acids amongst GPCRs are 

highlighted in cyan. 
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Protein side chains were optimized using a backbone-dependent rotamer library 

(SCWRL4), and PROCHECK was performed to examine the stereochemistry of the 

receptor.  Protable (SYBYL 8.1) was utilized to check all amino acid bond angles, bond 

lengths, and torsion angles.  

Once the inactive α2A-AR homology model was energy minimized (Tripos Force 

Field; Gasteiger-Hϋckel charges, distance-dependent dielectric constant = 4.0), 

modifications to the receptor were made to mimic the active state: (a) rotating TM6 (-

30°; R6.29-V6.60), (b) tilting the extracellular portion of TM5 into the binding pocket (6°; 

K5.36-A5.49), and (c) ‘turning on’ the toggle switch63 (i.e., modifying the χ1 rotameric 

state of C6.47, W6.48 and F6.52 to g+, t and t, respectively).  These modifications were 

assumed to simulate an active state because they have been observed in other active-

state structures of GPCRs.61-63  Tilting of TM5 brought residues S5.42 and S5.46 

approximately 1 Å closer to D3.32.  Rigid rotation of TM6 broke the ionic lock (R3.50–

E6.30 Cα distance = 12.9 Å) and enlarged the intracellular G protein binding cavity 

consistent with experimental results.62  Side chain conformations of residues on TM5 

and TM6 were adjusted using SCWRL4, and manually, to optimize side chain–side 

chain interactions.  PROCHECK was performed which resulted in a Ramachandran 

plot.  This plot indicates which amino acid residues are within the most favorable (red), 

additional allowed (yellow), generously allowed (khaki), and disallowed (white) regions 

(Figure 57).  As depicted in Figure 57, 90.4% of the amino acids were within the most 

favorable region (red), 8.8% in the allowed regions (yellow or khaki) and only two amino 

acids (0.8%) showed disallowed stereochemistry (white): E237 and C401.  However, 

both of these latter two amino acids are located outside of the proposed binding pocket 
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and, therefore, for our purposes, these imperfections were ignored and should not 

impact the docking studies.  More specifically, E237, which was just outside the 

allowable region (Figure 57), is part of IL-3, whereas C401 is part of EL-3. 

   

 

Figure 57.  A Ramachandran plot of the active α2A-AR homology model (generated by 

PROCHECK; Sybyl 8.1). 
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 To validate the energy-minimized active α2A-AR homology model, the 

endogenous ligands norepinephrine (NE; 1) and epinephrine (EPI; 2) were docked 

(GOLD 4.0) into the binding pocket (15-18 Å sphere centered around the conserved 

aspartate in TM3, D3.32).  Since both NE (1) and EPI (2) have a stereocenter, all four 

isomers were examined in the docking study (NE: (R)-1 and (S)-1; EPI: (R)-2 and (S)-

2).  In the case of both phenylethylamines, the R-enantiomers are more active and have 

higher affinity at α2-ARs than those with the S-configuration of the β-OH group.53  

Additionally, N-methyl-substituted phenylethylamines, such as 2, have higher binding 

affinity at α2-ARs than unsubstituted analogs, such as 1.53  Additional SAFIR studies, 

including other analogs of 1 and 2, which were discussed in greater detail in the 

Background section, have been published in the past two decades (Figure 5 and Table 

1).   

 Due to extensive SAFIR studies, as well as site-directed mutagenesis studies, of 

phenethylamines, much is known about the binding mode of these agents, which makes 

phenethylamines a good tool to help validate the homology model.  With support from 

catecholamine molecular modeling studies, the Easson-Stedman hypothesis suggests a 

three-point interaction between adrenoceptors and catecholamines [e.g., NE (1) and 

EPI (2)]:  (a)  the protonated aliphatic amine, (b)  the catecholic hydroxyl groups, and (c)  

the β-hydroxyl group (see Table 13 for specific interactions).83,84   
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Table 13.  Interactions between α2-ARs and catecholamines.70,85,86 

Chemical interaction α2-AR residue catecholamine moiety 

ionic bond D3.32 charged amine 

hydrogen bond S5.42 meta-hydroxyl 

hydrogen bond S5.46 para-hydroxyl 

hydrogen bond S2.61 or Y6.55 β-OH 

 

 When necessary, constraints were incorporated into the GOLD dockings of the 

endogenous ligands: H-bond constraints with the highly conserved D3.32, and distance 

constraints with S5.42 and S5.46. In general, data from site-directed 

mutagenesis85,86,215 and structure-activity relationship (SAR)215 studies of epinephrine 

(2) and its analogs were used to guide the docked poses into the models.  In addition to 

comparing results to the Easson-Stedman hypothesis (Table 13), various characteristics 

were analyzed when examining the docking results, such as the GOLDscore (the higher 

the score, the better the docking result is likely to be based on factors such as H-

bonding energy, van der Waals energy and ligand torsion strain), potential “unfavorable” 

interactions (e.g., the ligand is “too close” to the protein backbone; clashing), and 

favorable bonding distances (e.g., hydrogen bond ≈ 3 Å). 

Of the four isomers [i.e., (R) and (S) isomers of NE (1) and EPI (2)], (R)-EPI (2; Ki 

= 13 nM) has the highest binding affinity at α2A-ARs (active state) and, therefore, should 

display additional and/or stronger interactions with the receptor in comparison to the 

remaining 3 isomers.  As shown in Figure 58, the main ligand–receptor interactions of 

(R)-EPI (2) observed in the active α2A-AR model were:  (a) ionic: N+—D3.32; (b) HB: β-
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OH—D3.32, m-OH—S5.42 and p-OH—S5.46; (c) π-π (edge-to-face):  F6.51, Y6.55; 

CH-π: V3.33; (d) π-cation: N+—F7.39.  The β-OH moiety of (R)-EPI (2) seems to 

strongly interact (H-bond) with D3.32 whereas in the docking poses of (S)-EPI (2), the 

additional H-bond interaction with D3.32 was absent (i.e., the distance between the 

oxygen atoms of the β-OH and D3.32 side chain was > 5Å).  This is consistent with the 

lower binding affinity of (S)-EPI (2) at α2A-ARs (Ki = 687 nM; agonist radioligand).215 
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Figure 58.  Proposed binding mode of (R)-epinephrine (2) in the active α2A-AR model. 

Amino acids within 4 Å are shown as capped sticks (grey) and distances (Å) of 

favorable ionic and HB interactions are shown in orange. 

 

   

The docked poses of the norepinephrine (1) isomers showed similar results (data 

not shown).  In general, the  poses are consistent with binding affinity assay studies of 

endogenous ligands (and their analogs) that indicate affinity is affected by: β-OH ((R)-
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isomer > (S)-isomers by ≈ 20-fold; presence > absence by ≈ 8-fold), m-OH (presence > 

absence by ≈ 100-fold); p-OH (presence > absence by ≈ 30-fold).86  These favorable 

interactions have been suggested by site-directed mutagenesis studies and are 

consistent with previous models.86,215,216 

The four lowest-energy rotamers of MD-354 (21), as interpreted from both 

conformational analyses, were docked in the abovementioned active model of the α2A-

AR (Figure 55).  After the MD-354 (21) rotamers were docked, energy minimization was 

implemented in order to optimize the bonding interactions between ligand and receptor.  

The major bonding interactions observed in the docked poses of MD-354 (21) rotamers 

include: (a) an ionic interaction between both the aniline and terminal nitrogens and 

D3.32 and (b) hydrogen bonding between the m-Cl group and either S5.42 or S5.46, 

with optimal bond distances (i.e., approximately 3 Å; Figure 59 and Table 14a).  There 

are, also, additional hydrophobic interactions observed in the proposed binding mode of 

MD-354 (21) at the active α2A-ARs (e.g., V3.33, F6.51, F7.35 and F7.39; Figure 59). 
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Table 14.  Distances (Å) of favorable HB and ionic interactions observed in proposed 

binding mode between ligands and the (a) active and (b) inactive α2A-ARs. 

 

(a) 

Ligand D3.32 Y5.38 S5.42 S5.46 

(R)-EPI (2) 

   terminal N 

   β-OH 

   m-OH 

   p-OH 

 

2.6 

2.6 

  

 

 

3.0 

2.9 

 

 

 

 

3.2 

+sc–MD-354 (21) 

   aniline N 

   terminal N 

   terminal N 

   m-Cl 

 

2.8 

3.3 

 

 

 

3.8 

 

 

 

 

3.0 

 

-ac–MD-354 (21) 

   aniline N 

   terminal N 

   terminal N 

   m-Cl 

 

2.8 

3.4 

 

 

 

3.9 

  

 

 

 

3.0 

 

(b) 

Ligand D3.32 Y6.55 S5.42 

+sc–MD-354 (21) 

   aniline N 

   terminal N 

   terminal N 

   m-Cl 

 

2.8 

3.0 

 

 

 

3.1 

 

 

 

 

3.8 
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Figure 59.  Proposed binding mode of –ac- (magenta) and +sc- (orange) MD-354 (21) 

in the active α2A-AR model. Amino acids within 4 Å are shown in capped sticks (grey) 

and distances (Å) of favorable HB or ionic interactions are shown in orange. 
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Figure 60.  Proposed binding mode of +sc-MD-354 (21) in the active α2A-AR model; 

close-up of the interaction between the guanidine-D3.32 hydrogen bond network with 

the aryl ring of F7.39. D3.32 and F7.39 are shown in capped sticks (grey) and distances 

(Å) of favorable HB interactions are shown in orange whereas the centroid-to-centroid 

distance between the aryl ring of F7.39 and the 6-membered ring formed between the 

guanidine and D3.32 are shown by the black arrow. 

 

In the inactive model of α2A-ARs, MD-354 (21) docked in a similar manner as 

compared to the active-state docking pose.  Although the interaction with the TM5 

residues was minimal (i.e., the distance between the m-Cl group and the serine 

residues of TM5 was not optimal for halogen bonding; Table 14b), a more favorable 

interaction with all three nitrogen atoms of the guanidine moiety was observed (Figure 

61 and Table 14b).  Measurements between the heavy atoms indicate a favorable 

bonding distance between the aniline N and D3.32, the terminal amine and D3.32, and 

the other terminal amine and Y6.55.   
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Figure 61.  Proposed binding mode of +sc-MD-354 (21) in the inactive α2A-AR model. 

Amino acids within 4 Å are shown in capped sticks (grey) and distances (Å) of favorable 

HB or ionic interactions are shown in orange. 
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Figure 62.  Proposed binding mode of +sc-MD-354 (21) in the inactive α2A-AR model; 

close-up of the interaction between the guanidine-D3.32 hydrogen bond network with 

the aryl ring of F7.39. D3.32 and F7.39 are shown in capped sticks (grey) and distances 

(Å) of favorable HB interactions are shown in orange whereas the centroid-to-centroid 

distance between the aryl ring of F7.39 and the 6-membered ring formed between the 

guanidine and D3.32 are shown by the black arrow. 

 

Furthermore, the bonding network between the guanidine moiety of MD-354 (21) 

and the aspartate carboxylate moiety (D3.32) is stacked over the aromatic ring of F7.39 

in both the inactive and active α2A-AR models (Figures 60 and 62).  The centroid-to-

centroid distance, as shown in these figures, indicates that the 6-membered ring formed 

by the hydrogen bonding network between the guanidine moiety of MD-354 (21) and the 

carboxylate group of D3.32 has a slightly stronger parallel-stacking interaction with the 
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aryl ring of F7.39 in the inactive state (3.6 Å) in comparison with the active state (4.0 Å) 

of the α2A-AR models.217 

 

3.  α2B-Adrenoceptor 3D models 

 

Since the sequence similarity within the TM regions is greater between α2A- and 

α2B-ARs (94%) compared to α2B-ARs and β2-ARs (66%), α2B-AR homology models were 

generated based on the previously generated α2A-AR models.  The “active” α2A-AR 

model, which was previously supported by simulating the proposed binding mode of the 

neurotransmitters (i.e., the binding mode based on site-directed mutagenesis results 

and other homology models), was used as the template for the “active” α2B-AR model.  

First, the amino acid side chains among the transmembrane helices were mutated to 

mimic the α2B-AR sequence.  The intra- and extracellular loops were replaced by protein 

loops with similar sequences and then the side chains were mutated if necessary (Sybyl 

8.1).  All protein side chains were optimized using a backbone-dependent rotamer 

library (SCWRL 4).  As a final assessment, PROCHECK was performed to examine the 

stereochemistry of the receptor and Protable was used to check all amino acid bond 

angles, bond lengths, and torsion angles (SYBYL 8.1). Protein modifications were 

manually made when necessary; for example, the χ1 torsion angle of S5.42, which has 

been implicated in neurotransmitter binding, was modified so that the serine side chain 

pointed into the binding pocket. Protein modifications were followed by energy 

minimization in order to optimize ligand—receptor interactions. 
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The two best binding modes of MD-354 (21) (i.e., those with the most optimal 

bonding interactions) at the active α2B-ARs showed favorable ionic interactions with the 

conserved D3.32 (bonding distance = 2.7-3.0 Å), as well as hydrogen bonding 

interaction between the terminal amine of MD-354 (21) and Y5.38 (Table 15a and 

Figure 63).  Furthermore, only one MD-354 (21) rotamer displayed an interaction with 

TM5.  The proposed binding mode of the –ac-MD-354 (21) rotamer showed favorable 

distance (approximately 3 Å) between the m-Cl moiety and a serine residue of TM5 

(S5.46); that is, a halogen bond interaction was observed between the ligand and 

receptor (Table 15a and Figure 63). 
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Table 15.  Distances (Å) of favorable HB and ionic interactions observed in proposed 

binding mode between ligands and the (a) active and (b) inactive α2B-ARs. 

(a) 

Ligand D3.32 Y5.38 S5.46 

+sc–MD-354 (21) 

   aniline N 

   terminal N 

   terminal N 

   m-Cl 

 

 

3.0 

2.8 

 

 

2.9 

 

 

 

-ac–MD-354 (21) 

   aniline N 

   terminal N 

   terminal N 

   m-Cl 

 

 

2.9 

2.7 

 

 

2.8 

 

 

 

 

 

 

 

3.2 

(b) 

Ligand D3.32 Y6.55 S5.42 

+sc–MD-354 (21) 

   aniline N 

   terminal N 

   terminal N 

   m-Cl 

 

2.6 

2.8 

 

 

 

 

 

3.4 

 

+ac–MD-354 (21) 

   aniline N 

   terminal N 

   terminal N 

   m-Cl 

 

2.7 

2.7 

 

 

 

 

 

3.1 

 

 

 

 

3.4 

-sc–MD-354 (21) 

   aniline N 

   terminal N 

   terminal N 

   m-Cl 

 

3.2 

3.2 

3.0 

 

 

 

 

 

2.8 

 

 

 

 

3.9 

 

 



www.manaraa.com

   

175 

 

 
 

Figure 63.  Proposed binding mode of –ac- (magenta) and +sc- (orange) MD-354 (21) 

in the active α2B-AR model. Amino acids within 4 Å are shown in capped sticks and 

distances (Å) of favorable HB or ionic interactions are shown in orange. 

 

In the inactive model of α2B-ARs, three conformers of MD-354 (21) showed good 

ionic interactions with the conserved asparate residue (D3.32), as well as, hydrogen 
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bonding with Y6.55 and either the terminal amine or m-Cl group (dependent on the 

rotamer; Table 15b and Figure 64).   

 

 

Figure 64.  Proposed binding mode of –sc- (green), +ac (magenta), and +sc- (orange) 

MD-354 (21) in the inactive α2B-AR model. Amino acids within 4 Å are shown in capped 

sticks and distances (Å) of favorable HB or ionic interactions are shown in orange. 
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As in the active and inactive models of α2A-ARs, parallel stacking (i.e., a π-π 

interaction) was observed between the bonding network of the amines in MD-354 (21) 

and D3.32 with F7.39 in the inactive model only (i.e., not in the active model) of α2B-ARs 

(centroid-to-centroid distance = 3.6 Å; Figure 64).   

 

4.  α2C-Adrenoceptor 3D models 

 

The active model of the α2C-AR was generated in a similar manner to that of the 

α2B-ARs.  That is, the active α2A-AR model was mutated to simulate the α2C-AR 

sequence, loopsearch was conducted to incorporate possible loop configurations, 

SCWRL was conducted, protein modifications were made if necessary and the receptor 

was energy minimized.  Next, the NTs [(R)- and (S)-isomers of NE (1) and EPI (2)] were 

docked and the resulting ligand—receptor complex was energy minimized (data not 

shown).  This model (with the ligand removed) was used for subsequent MD-354 (21) 

dockings. 

The two best binding modes of MD-354 (21) in the active α2C-AR model showed 

favorable bonding distances for a halogen bond between the m-Cl group of 21 and 

S5.46 (≈3.1 Å), as well as ionic interactions between the amines of 21 and D3.32 and 

Y5.38 (≈2.7-3.0 Å) (Figure 65). 
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Figure 65.  Proposed binding mode of –ac- (purple) and +sc- (orange) MD-354 (21) in 

the active α2C-AR model. Amino acids within 4 Å are shown in capped sticks (grey) and 

distances (Å) of favorable HB or ionic interactions are shown in orange. 

 

MD-354 (21) docking studies with the inactive α2C-AR model proved to be 

difficult; MD-354 (21) did not seem to bind favorably into the binding pocket.  That is, 

MD-354 (21) would sometimes interact with the conserved aspartate D3.32, but would 

never reach the other side of the binding pocket near TM5 regardless of which rotamer 

of MD-354 (21) was utilized in the docking study (data not shown).  Unsuccessful 
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attempts to influence the binding mode of MD-354 (21) in the inactive α2C-AR model 

were made.  Manually docking MD-354 (21) closer to TM5, as well as additional binding 

constraints in GOLD (e.g., distance constrainsts between the m-Cl group of MD-354 

(21) and the conserved TM5 serines), resulted in unfavorable interactions and therefore, 

upon energy minimizations, 21 moved away from TM5.  

 

5.  Discussion 

 

3D molecular modeling studies suggest that MD-354 (21) might bind to the 

“active” α2A-AR model in a manner similar to that of epinephrine (2).  More specifically, 

when superimposing +sc-MD-354 (21) and (R)-EPI (2) docked poses, the terminal 

amines, as well as the m-hydroxyl and chloro groups, overlap (Figure 66).  In turn, these 

functional groups appear to interact with the same amino acid residues (i.e., ionic: N+—

D3.32; HB: m-OH—S5.42 or m-Cl—S5.42; Figure 66).  Although the aromatic moiety 

and one of the terminal amines of –ac-MD-354 (21) does overlap with the docked pose 

of (R)-EPI (2), the m-Cl group does not overlap with the m-OH of (R)-EPI (2) (Figure 

66).  Alternatively, this m-Cl group overlaps with the unsubstituted m-position of (R)-EPI 

(2).  Therefore, the docked pose of –ac-MD-354 (21) does not display an optimal 

interaction with S5.42, but may interact with S5.46 (bonding distance = 3.0 Å). 
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Figure 66.  Proposed binding mode of (R)-Epinephrine (2) (magenta), –ac- (orange) 

and +sc- (green) MD-354 (21) in the active α2A-AR model. Key amino acids of α2A-ARs 

are shown in capped sticks (grey). 

 

Based on the molecular modeling studies, it is possible that MD-354 (21) has a 

greater binding affinity at the low affinity state (i.e., inactive model of α2A-ARs) in 

comparison to the high affinity state because of increased interactions with the receptor.  

In the proposed binding mode of MD-354 (21) at the inactive α2A-ARs, there were three 

amine—receptor interactions (D3.32 and Y6.55), all of which were in optimal distance 

from each other (i.e., approximately 3 Å), but no halogen bonding with TM5 (e.g., m-

Cl—S5.42 or S5.46).  When evaluating all docked poses of the four lowest-energy 

rotamers of MD-354 (21) in the inactive α2A-AR model, the closest measurement 



www.manaraa.com

   

181 

 

between the m-Cl group and the TM5 serine residues was 3.8 Å, which is not optimal 

for a halogen bond.  In general, a halogen bond, which is a short interaction between a 

carbon-bonded halogen [e.g., the m-Cl moiety of MD-354 (21)] and a carbonyl, 

hydroxyl, charged carboxylate, or phosphate group (e.g., S5.42 or S5.46 of α2A-ARs), is 

optimally less than 3.3 Å when chlorine is the halogen.218  In general, the binding mode 

of MD-354 (21) contains three strong amine—receptor interactions in the inactive state, 

whereas it contains only 2 amine—receptor interactions and a relatively weak halogen 

bond in the active state.  It is hypothesized that this difference in interactions provides 

support for the MD-354’s (21) greater binding affinity (less than 10-fold difference 

between the “active” and “inactive” α2A-ARs; see Table 5 for Ki values) at the “inactive” 

state. 

The π-π stacking interaction (i.e., the bonding network between the guanidine 

moiety of MD-354 (21) and the aspartate carboxylate moiety (D3.32), which is stacked 

over the aromatic ring of F7.39) has been previously found between the H-bonding 

network between R (the guanidinium moiety) and E or D (the carboxylate moiety) and 

the aromatic moiety of a tyrosine residue.217  In this particular example, the distance 

between the center of the hydrogen bonding network and the center of the aromatic 

residue was 3.7 Å.217 This additional interaction in the proposed binding mode of MD-

354 (21) in the inactive state of α2A-ARs may be one of the factors involved with 

increased binding affinity as compared to the active state (Figures 60 and 62). 

It was not obvious as to how MD-354 (21) could behave as a weak partial agonist 

at α2A-ARs, while having a greater binding affinity to the low-affinity state of the receptor.  

However, it is noted, that the docking studies described above do indicate that MD-354 
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(21) only interacts with the conserved TM5 serines (S5.42 or S5.46) when α2A-AR is in 

an active conformation.  That is, modifications to the inactive α2A-AR model brought the 

top portion of TM5 further into the binding pocket, which allowed the m-Cl group of MD-

354 (21) to get close enough to either S5.42 or S5.46 for a favorable halogen bond.  As 

it has been previously proposed that the movement of TM5 is an important 

conformational change in GPCR activity, the interaction of the ligand and the TM5 

residues might be key in keeping a receptor in its active state.  Therefore, the agonist 

activity of MD-354 (21) at α2A-ARs may be due to its halogen bonding with S5.42 or 

S5.46.  Further, it is proposed that MD-354 (21) does not produce full agonist activity 

because halogen bonds are not extremely strong. 

When comparing the proposed binding modes of MD-354 (21) in the active and 

inactive α2B-AR models, one difference is that the four lowest-energy conformers of MD-

354 (21) do not get close enough to TM5 to have favorable bonding distances between 

the m-Cl group of 21 and the conserved serines, S5.42 and/or S5.46, in the inactive 

model (Table 15).  Secondly, in the active α2B-AR model, F7.39 was positioned too far 

away (>5 Å) from the guanidine moiety of MD-354 (21) to provide a parallel-stacking 

interaction.  Furthermore, the hydrogen bonding interactions between the guanidine of 

21 and the carboxylate group of D3.32 were not optimal; that is, they did not form a 6-

membered ring parallel to the aryl ring of F7.39 (as shown in Figure 63).  It is possible 

that the additional parallel stacking interaction of MD-354 (21) in the inactive α2B-AR 

model with the TM7 phenylalanine (F7.39), prevents the ligand from strongly interacting 

with the other side of the binding pocket, specifically with the TM5 serines (S5.42 and 

S5.46). 
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When comparing the two α2B-AR models, it is proposed that the approximately 

10-fold difference in binding affinity of MD-354 (21) at the “active” and “inactive” α2B-

ARs (Ki = 25 and 220 nM at agonist [125I]clonidine and antagonist [3H]RX 821002 sites; 

Table 5) may be due to the halogen bond interaction between the m-Cl group and S5.46 

observed in the –ac-MD-354 (21) binding mode in the active α2B-AR model (Figure 63). 

As for the antagonist functional data for MD-354 (21) at α2B-ARs, it is possible that the 

parallel-stacking interaction (between F7.39 and the hydrogen bonding network of the 

guanidine moiety of MD-354 (21) and the carboxylate group of D3.32) reduces 

interaction with TM5 and therefore, affects MD-354’s (21) activity at α2B-ARs. 

In the docking studies for the active α2C-AR model, the four lowest-energy 

conformers of MD-354 (21) showed favorable bonding distances to indicate ionic 

interactions between amines of 21 and D3.32 and Y5.38, as well as halogen bonding 

interactions between the m-Cl group of 21 and S5.46 (Figure 65).  On the other hand, 

the conformers of MD-354 (21) did not show optimal interactions when docked to the 

inactive α2C-AR model; in fact, MD-354 (21) did not always reach the binding pocket 

(i.e., it did not always interact with the conserved aspartate D3.32).  Although not too 

much can be concluded, these types of results in a docking study are indicative of a 

relatively low binding affinity. 

 In summary, the homology modeling results indicate that the difference in binding 

affinity of MD-354 (21) at the low- and high-affinity states of α2A-ARs may be due to the 

amine—receptor interactions, which are stronger in the inactive α2A-AR model than in 

the active α2A-AR model, whereas the binding affinity difference of MD-354 (21) at the 

low- and high-affinity states of α2B-ARs seem to be due to the additional halogen bond 
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interaction between the m-Cl group of 21 and the conserved TM5 serine (S5.46) in the 

active α2B-ARs.  The inability of the lowest-energy conformer of MD-354 (21) to always 

bind in the binding pocket (i.e., the pocket centered around the conserved D3.32) of the 

inactive α2C-AR model correspond to the low binding affinity.  Overall the above results 

are only speculative, and remain to be further investigated (or documented) by 

mutagenesis studies. 
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V.  Conclusions 

 

One goal of the current project was to further investigate the mechanism of 

action of the selective analgesia-potentiating effect of clonidine (7) by MD-354 (21).  As 

previously reported, co-administration of MD-354 (21) and clonidine (7) produces a 

biphasic analgesic effect in the mouse tail-flick assay (Peaks A and B, Figure 12) and 

mechanistic studies suggested that the analgesic potentiation is due, at least in part, to 

a 5-HT3 receptor and an α2-AR mechanism.29,33,34 

In the present investigation, the structurally similar, yet more established, 5-HT3 

receptor agonist mCPBG (20), also produced saline-like effects when administered 

alone (Figure 22), but potentiated the antinociceptive effect of an “inactive” dose of 

clonidine (7) in the mouse tail-flick assay (Figure 23a).  Similar to the MD-354/clondine 

(21/7) mechanistic studies,31,34 attenuation of the antinociceptive effect of the 

mCPBG/clonidine (20/7) combination by the 5-HT3 receptor antagonist tropisetron (25; 

Figure 25), as well as the non-selective α2-AR antagonist yohimbine (11; Figure 27), 

indicated that 5-HT3 receptors and at least some subtypes of the α2-AR are involved in 

mCPBG’s (20) potentiating effect in the mouse tail-flick assay.  Furthermore, since the 

5-HT3 receptor antagonist tropisetron methiodide, that does not readily cross the 

BBB,116 failed to block the analgesic effect produced by the mCPBG/clonidine (20/7) 

combination (Figure 26), it seems that the role of 5-HT3 receptors in the potentiating 

mechanism may be centrally-mediated.  Similar to the MD-354 (21) results presented in 
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previous investigations,29,33 mCPBG’s (20) potentiation of the antinociceptive effects of 

clonidine (7) is a selective effect; that is, a dose combination of mCPBG (20, 6.0 mg/kg) 

and clonidine (7; 0.25 mg/kg), which produce a statistically significant increase in 

antinociceptive effects (% MPE = 68.0) in the tail-flick assay, did not affect the 

locomotor effects of clonidine (Figure 30). 

Unlike the potentiation effect observed in the mouse tail-flick assay, mCPBG (20) 

attenuated clonidine’s (7) antinociceptive effect in the mouse hot-plate assay (Figure 

29).  This result was also observed when the structurally similar 5-HT3 receptor agonist 

MD-354 (21) is co-administered with clonidine (7) in the mouse hot-plate assay.33   

The previous MD-354 (21)34 and current mCPBG (20) studies both indicate that 

5-HT3 receptors play a role in the analgesia-potentiating effect of clonidine (7). 

Furthermore, the tropisetron (25) and tropisetron methiodide mechanistic studies 

suggest that mCPBG (20) potentiates the antinociceptive effects of clonidine (7), at 

least in part, due to a central 5-HT3 receptor mechanism.  Therefore, SR57227A (22), a 

known centrally-acting 5-HT3 receptor agonist, was selected as a pharmacological tool 

to evaluate central versus peripheral activity.  When SR57227A (22; 0.3-10 mg/kg 

doses) was administered alone, saline-like effects were observed in the mouse tail-flick 

(Figure 31) and hot-plate (Figure 36) assays.  In fact, in a modified tail-flick assay 

wherein radiant heat is adjusted, dose-dependent hyperalgesic effects were produced in 

SR57227A (22)-treated mice (Figure 33).  At higher doses, SR57227A (22; 30 mg/kg) 

produced antinociceptive effects in the mouse tail-flick (Figure 31) and hot-plate (Figure 

36) assays.  However, locomotor activity results indicated that this high dose also, 

produces significant hypolocomotor actions in comparison to saline (Figure 38), which 
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can misleadingly suggest that a high dose of SR57227A (22; 30 mg/kg) produces 

antinociceptive effects.   

Unlike the other 5-HT3 receptor ligands studied [MD-354 (21) and mCPBG (20)], 

SR57227A (22) did not attenuate or potentiate the antinociceptive actions of an 

“inactive” dose (Figure 34) or an ED50 dose (Figure 35) of clonidine (7).  SR57227A 

(22), also, had no effect on the antinociceptive effects of clonidine (7) in the mouse hot-

plate assay (Figure 36).  Because it has been previously shown that SR57227A (22) 

behaves as an agonist at central 5-HT3 receptors115 and the abovementioned results 

indicate that SR57227A (22) does not alter the antinociceptive effects of clonidine (7), it 

might be speculated that MD-354 (21) potentiates the analgesic actions of clonidine (7) 

via a peripheral 5-HT3 receptor mechanism, but this is highly unlikely as already 

described above and in the Discussion. 

Since previous mechanistic studies of the analgesia-potentiating effect of 

clonidine (7) by MD-354 (21) also suggest a role for α2-ARs (e.g., an α2-AR agonist 

mechanism in Peak A),31 TDIQ (6), a non-selective α2-AR agonist devoid of 5-HT3 

receptor activity, was selected as a pharmacological tool to examine the potential α2-AR 

mechanism.  In both antinociceptive assays, TDIQ (6) showed saline-like effects when 

administered alone (tail-flick assay: Figure 39; hot-plate assay: Figure 48).  However, 

studies with co-administration of TDIQ (6) and clonidine (7; “inactive” dose) in the 

mouse tail-flick assay indicated potentiation of the antinociceptive effects of clonidine (7) 

in a dose-dependent manner (Figure 40).  This is analogous to the MD-354/clonidine 

(21/7) results previously reported.31   
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Furthermore, since both clonidine (7) and TDIQ (6) are non-selective α2A/2B/2C-AR 

agonists, TDIQ’s (6) potentiation of clonidine (7)-induced antinociception might simply 

be an additive effect of the two agents.  However, an isobolographic analysis indicated 

that TDIQ (6) potentiates the analgesic actions of clonidine (7) in a synergistic (or super-

additive) manner in the mouse tail-flick assay [3:1 and 12:1 fixed ratios fo TDIQ (6) and 

clonidine (7), Figure 47]; that is, the isobologram suggested that the antinociception 

produced by the combination of drugs [TDIQ (6) and clonidine (7)] is greater than the 

sum of the individual effects of the component drugs. 

In order to determine the mechanism of action associated with TDIQ’s (6) 

potentiating effect of the antinociceptive actions of an “inactive” dose of clonidine (7), 

various α2-AR antagonists were co-administered with the TDIQ/clonidine (6/7) 

combination.  Since the selected α2-AR antagonists, BRL44408 (15; preferentially 

selective at α2A-ARs), imiloxan (12; preferentially selective at α2B-ARs) and ARC-239 

(14; preferentially selective at α2B/2C-ARs), produced saline-like effects when 

administered alone, but blocked the antinociceptive effect of the TDIQ/clonidine (6/7) 

combination (Figures 42, 43 and 44), there is support for an α2A- and α2B-AR role in the 

mechanism and, further, a role for α2C-AR cannot be ruled out.  These results support 

the hypothesis that MD-354 (21) could be potentiating the analgesic actions of clonidine 

(7) via an α2-AR agonist mechanism. 

Thus, potentiation of the analgesic actions of clonidine (7) by MD-354 (21) might 

be attributed to its unique 5-HT3 receptor/α2-AR character (Peak A, Figure 12) 

As indicative of the abovementioned pharmacological studies, there is support for 

a 5-HT3 receptor mechanism in the selective potentiation of the antinociceptive actions 
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of clonidine (7) by MD-354 (21), which leads to the next goal of the present 

investigation: the exploration of conformationally-constrained rotamers of the 5-HT3 

receptor agonist MD-354 (21).  Preliminary results indicated that when MD-354 (21) was 

constrained into a quinazoline ring to form two MD-354 (21) rotamers, 2-amino-7-chloro-

3,4-dihydroquinazoline (26) and 2-amino-5-chloro-3,4-dihydroquinazoline (27), 26 more 

closely mimics the binding profile of MD-354 (21) (Figure 13 and Table 7).  Therefore, 

26 was used as the parent compound in the present investigation which explored the 

role of the ring nitrogen atoms and the chloro substituent in binding at 5-HT3 receptors. 

In order to explore the role of the ring nitrogen atoms, procedures to synthesize 

compounds 28-33 (Figure 14) were developed, but only compound 28, 29, 30 and 33 

were successfully synthesized (Schemes 2, 7, 9 and 10).  Additionally, compound 65 

was also synthesized because its precursor was a minor product in the reaction scheme 

to synthesize 33 (Schemes 11 and 12).  Compounds 38 and 39 (Figure 16) were 

successfully prepared in order to study the role of the chloro substituent (Schemes 13  

and 14).  Binding affinity at 5-HT3 receptors have been evaluated for compounds 28, 33 

and 65, all of which lacked affinity at 5-HT3 receptors (Ki > 10,000 nM).  Due to these 

preliminary binding results, it is evident that the nitrogen atoms of the conformationally-

constrained analogs of MD-354 (21) are important for 5-HT3 receptor binding.  The 

conformationally-constrained MD-354 (21) analog 28 is missing one of the two terminal 

amines of MD-354 (21) or when comparing to 26, it is missing the 3-position amine.  

Both MD-354 (21) and 26 display high affinity at 5-HT3 receptors (Ki = 35 and 34 nM, 

respectively, Table 7) whereas the des-amino anolog 28 lacks 5-HT3 receptor binding 

affinity (Ki > 10,000 nM), which suggests that at least one, if not both, of the MD-354 
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(21) terminal amines is necessary for 5-HT3 receptor binding.  Furthermore, no matter 

which meta-position the chloro substituent is in, when the aniline and 3-position nitrogen 

atoms are missing, 5-HT3 receptor binding is abolished.  For example, when comparing 

compunds 26 (Ki = 34 nM) with 33 (Ki > 10,000 nM), and 27 (Ki = 1021 nM) with 65 (Ki > 

10,000 nM), 5-HT3 receptor binding affinity is reduced by at least 300- and 10-fold, 

respectively (Table 7).  5-HT3 receptor binding affinity results of the remaining 

synthesized compounds will further evaluate the role of the nitrogen atoms and the 

chloro substiutent in MD-354 (21) and conformationally-constrained analogs of MD-354 

(21) in 5-HT3 receptor binding. 

Just as the present investigation showed that various 5-HT3 receptor [e.g., 

mCPBG (20) and SR57227A (22)] and α2-AR [e.g., TDIQ (6)] ligands potentiated the 

antinociceptive actions of clonidine (7) via 5-HT3 receptor or α2-AR mechanisms, 

previous pharmacological studies indicated that there was a 5-HT3 receptor and α2-AR 

mechanism involved in clonidine’s (7) analgesic potentiation by MD-354 (21) in the 

mouse tail-flick assay.  Since MD-354 (21) shows varied binding affinities and functional 

activity at the α2-AR subtypes, the final goal of the current studies was to explain these 

subtype differences via examination of the binding mode of MD-354 (21) to graphic 

receptor models of low- and high-affinity states of α2A-, α2B- and α2C-ARs. 

In order to examine the binding mode of MD-354 (21) at α2A-, α2B- and α2C-ARs in 

their inactive and active states, it was first necessary to identify the lowest-energy 

conformers of MD-354 (21) as these conformers should mimic the likely conformations 

of MD-354 (21) in its binding mode. A systematic conformation search conducted in 

SYBYL identified the four lowest-energy rotamers of MD-354 (21; Figure 55), which 
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coincidentally, matched the torsion angles found in arginine, clonidine (7) and mCPBG 

(20) crystal structures. 

The inactive state of α2A-ARs was modeled by mutating the β2-AR crystal 

structure (pbd ID: 2RH1) and the active state of α2A-ARs was modeled by modifying the 

inactive α2A-AR homology model in a manner observed in other active-state structures 

of GPCRs.  Due to extensive SAFIR studies and site-directed mutatgeneis studies of 

phenethylamines, endogenous ligands including NE (1) and EPI (2), were docked into 

the binding pocket to help validate the active α2A-AR homology model.  Similar to the 

support in the literature, the docking studies indicated ligand—receptor interactions of, 

for example, (R)-EPI (2) in the active α2A-AR model: (a) ionic: N+—D3.32; (b) HB: β-

OH—D3.32, m-OH—S5.42 and p-OH—S5.46; (c) π-π (edge-to-face):  F6.51, Y6.55; 

CH-π: V3.33; (d) π-cation: N+—F7.39 (Figure 58).  The lower binding affinity of (S)-EPI 

(2) in comparison to (R)-EPI (2) may be due to the decreased ligand—receptor 

interactions such as the H-bond interaction between the conserved D3.32 and the β-OH 

moiety of (S)-EPI (2). 

Upon docking the four lowest-energy rotamers of MD-354 (21) based on the 

conformational analyses in the active model of α2A-AR, the major bonding interactions 

observed included: (a) an ionic interaction between both the aniline and terminal 

nitrogens and D3.32; (b) hydrogen bonding between the m-Cl group and either S5.42 or 

S5.46; (c) hydrophobic interactions with V3.33, F6.51, F7.35 and F7.39 (Figure 59 and 

Table 14a).  In general, these docking studies suggest that MD-354 (21) might bind to 

the active α2A-AR model in a manner similar to that of EPI (2) (Figure 66). 
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Furthermore, when comparing the proposed binding modes of MD-354 (21) at 

the inactive and active α2A-ARs, it is possible that MD-354 (21) has a greater binding 

affinity at the low-affinity state because of increased interactions with the receptor.  

Specifically, the binding mode of MD-354 (21) contains three strong amine—receptor 

interactions in the inactive state, whereas it contains only 2 amine—receptor 

interactions and a relatively weak halogen bond in the active state. 

Upon a comparison between the proposed binding modes of MD-354 (21) at the 

inactive and active α2B-AR models, it is proposed that the approximately 10-fold 

difference in binding affinity of MD-354 (21) at the low- and high-affinity state α2B-ARs 

(Ki = 25 and 220 nM, respectively; Table 5) may be due to the halogen bond interaction 

between the m-Cl group and S5.46 observed in the –ac-MD-354 (21) binding mode in 

the active α2B-AR model (Figure 63).  With regards to the antagonist functional data for 

MD-354 (21), it is possible that the additional parallel-stacking interaction (between 

F7.39 and the hydrogen bonding network of the guanidine moiety of MD-354 (21) and 

the carboxylate group of the conserved D3.32) dimishes the interaction with TM5 

residues and therefore, affects MD-354’s (21) ability to “hold” the α2B-AR in an active 

state. 

As the lowest-energy conformers of MD-354 (21) did not show optimal 

interactions in the inactive α2C-AR model, low binding affinity is not surprising.  Similar to 

proposed binding mode of MD-354 (21) at active α2A-AR models, favorable bonding 

distances for a halogen bond between the m-Cl group of 21 and S5.46, as well as ionic 

interactions between the amines of 21 and D3.32 and Y5.38 was observed in the active 

α2C-AR docking results. 
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To conclude, the pharmacological studies indicated that arylguanidines represent 

a novel class of analgesic adjuvants with a dual mechanism of action (i.e., the 

mechanism involves both 5-HT3 receptors and α2-adrenoceptors). The proposed 

docking modes of MD-354 (21) at high-affinity states of α2A- and α2B-AR models display 

a halogen bond interaction between the chloro group of MD-354 (21) and conserved 

TM5 serines.  Since the tilting of TM5 into the binding pocket has been implicated in the 

GPCR activation process, it seems possible that this halogen bond interaction observed 

in the α2A- and α2B-AR models might account for its partial agonist activity.  Furthermore, 

on the basis of available binding affinity data of conformationally-constrained MD-354 

(21) analogs, the nitrogen atoms seem to be necessary for 5-HT3 receptor binding 

affinity.   
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VI.  Experimental 

 

A.  Pharmacological studies 

 

 1.  Animals  

 

Male ICR mice (Harlan Laboratories; Indianapolis, IN; 19-30 g) were housed in 

groups of 5-6, with free access to food and water.  The housing rooms were under a 

temperature- (22 °C) and humidity- (≈50%) controlled environment and a standard 

12:12 h light/dark cycle starting at 7:00 a.m.  The experiements were conducted in 

accordance to protocols set by the Institutional Animal Care and Use Committee 

(IACUC) of Virginia Commonwealth University (IACUC protocol # AM10339).  On the 

experiment day, mice were first acclimated to the testing environment for at least one 

hour and weighed prior to any treatment. 

 

2. Drugs 

 

The hydrochloride salts of MD-354 (21; meta-chlorophenylguanidine) and 

mCPBG (20) were synthesized in our laboratory.  Ondansetron hydrochloride (Zofran®, 

Lot CO99723; GlaxoSmithKline) was purchased from the MCVH-Pharmacy (Richmond, 

VA).  Imiloxan hydrochloride (12), ARC-239 (14; 2-[2-(4-(2-Methoxyphenyl)piperazin- 
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1-yl)ethyl]-4,4-dimethyl-1,3-(2H,4H)-isoquinolindione dihydrochloride), BRL44408 (15; 

2-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole), SR57227A 

hydrochloride (22; 1-(6-chloro-2-pyridyl)-4-piperidinylamine) and Zacopride (24) were 

purchased from Tocris (Ballwin, MO).  TDIQ (6; 5,6,7,8-tetrahydro-1,3-dioxolo[4,5-

g]isoquinoline) hydrochloride was synthesized in our laboratory.  Clonidine (7), 

tropisetron (25) and yohimbine (11) were purchased from Sigma-Aldrich Chemicals 

(Milwaukee, WI).  Tropisetron methiodide was purchased from RBI (Research 

Biochemicals Inc; Natick, MA).  Drug solutions were prepared daily; all drugs were 

dissolved in 0.9% saline and administered to mice in a total volume of 10 mL/kg body 

weight by subcutaneous (s.c.) or intraperitoneal (i.p.) injections.  Each dose of drug (or 

combination of drugs) was studied in at least 8 mice (i.e., n ≥ 8 mice/treatment).  

 

3. Behavioral assays 

 

a)  Tail-Flick assay 

 

Antinociception was assessed by the tail-flick method of D’Armour and Smith219  

as modified by Dewey et al.220 using a Columbus Tail-Flick Analgesia Meter (Columbus 

Instruments, Columbus, Ohio).  Determination of qualifying mice was conducted by 

screening each mouse before the treatment (qualifying control response time between 

1.7 and 4.0 s; in hyperalgesic studies: radiant heat was modified so that qualifying 

control response time was between 5 and 7 s).  Test latency was determined after drug 

administration.  In order to minimize tissue damage, a maximum latency of 10 s was 
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imposed.  The antinociceptive response was calculated as percent maximum possible 

effect (%MPE), where %MPE = [(test latency – control latency)/(cutoff time – control 

latency)] x 100. 

The experimental protocol for testing the antinociceptive effects of drugs was as 

follows: 15 min prior to s.c. administration of drugs, baseline tail-flick latency was 

determined for each mouse.  Drugs were administered either alone or in combination 

with other drugs with the following pre-injection times (i.e., injection time prior to test): 

TDIQ (6; 45 minutes), clonidine (7; 20 minutes), yohimbine (11; 60 minutes), imiloxan 

(12; 55 minutes), ARC-239 (14; 50 minutes), BRL-44408 (15; 50 minutes), mCPBG (20; 

45 minutes), MD-354 (21; 45 minutes), SR57227A (22; 45 minutes), ondansetron (23; 

50 minutes) and tropisetron/tropisetron methiodide (25; 50 minutes). 

 

b)  Hot-Plate assay 

 

The hot-plate method is a modification of that described by Eddy and 

Leimbech221 and Atwell and Jacobson.222  Mice were placed onto a hot-plate (Columbus 

Hot-plate Analgesia Meter) and covered with a 10 cm-wide glass cylinder, wherein the 

temperature was maintained at 55 °C.  Determination of qualifying mice was conducted 

by screening each mouse before the treatment (qualifying mouse displays a control 

response time between 6 and 10 s).  Test latency was determined after drug 

administration.  In order to prevent any paw damage, 30 s was used as the cutoff time.  

The antinociceptive response was calculated as percent maximum possible effect 



www.manaraa.com

   

197 

 

(%MPE), where %MPE = [(test latency – control latency)/(cutoff time – control latency)] 

x 100. 

The experimental protocol for testing the antinociceptive effects of drugs was as 

follows: 15 min prior to s.c. administration of drugs, baseline latency was determined for 

each mouse.  Drugs were administered either alone or in combination with other drugs 

with the following pre-injection times (i.e., injection time prior to test): TDIQ (6; 45 

minutes), clonidine (7; 30 minutes), mCPBG (20; 45 minutes) and SR57227A (22; 45 

minutes). 

 

c)  Locomotor activity assay 

 

Mice were placed into individual Tru Scan Infrared Locomotor Activity System 

(Coulbourn Instruments, Allentown, PA) photocell activity cages (40 cm cube) after s.c. 

(or i.p.) administration of drugs or combination of drugs (mice were only tested once).  

Ambulatory movement was measured by the number of times the animal interrupted the 

infrared beams traversing the cage for a period of 15 minutes; measurements were 

taken 15, 30 and 45 minutes following the start of the assay.  The behavioral analysis 

examined nine measures of activity: movement episodes, movement time (s), 

movement distance (cm), vertical entries, margin distance (cm), margin time (s), center 

distance (cm), center time (s) and center entries. 

Drugs were administered either alone or in combination with other drugs with the 

following pre-injection times (i.e., injection time prior to test): TDIQ (6; 30 minutes), 

clonidine (7; 5 minutes), mCPBG (20; 30 minutes) and SR57227A (22; 0 minutes). 
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4.  Statistical analysis 

 

Data were analyzed statistically by an analysis of variance (ANOVA) followed by 

the Dunnett’s post-hoc test.  A measure of significant difference between two groups 

was analyzed using a Student’s t-test.  The null hypothesis was rejected at the 0.05 

level. 

 

5.  Isobolographic analysis 

 

Synergism was assessed by the isobolographic analysis method described by 

Tallarida.223  In order to assess if a biological effect produced by a combination of drugs 

is greater than, equal to, or samller than the sum of the individual effects of the 

component drugs, an isobolographic analysis was performed.  The representative 

graph, an isobologram, compares the experimental ED50 of the combination of drugs 

(ED50mix) to the theoretical additive combination (ED50add).  ED50add is based on the 

individual potencies of the components (e.g. drug 1 and 2) in the combination.  If only 

drug 2 is active when administered alone then, the ED50add is based on the ED50 of drug 

2 and its proportion in the combination.  To evaluate synergism, the experimental 

ED50mix of a fixed-ratio of TDIQ (6) and clonidine (7) is compared to the theoretical 

ED50add of a simply additive mixture having the same proportions, wherein ED50add = 

(ED50clonidine) / Pclonidine (P = proportion). ED50mix and ED50clonidine were obtained from the 

regression analysis of the % MPE against log total dose.  The difference between the 

two ED50 values with its corresponding standard error was statistically tested with a 
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Student’s t-test.  Evaluation of results: a super-additive effect (exaggerated effect) 

occurs when ED50mix < ED50add, an additive effect (theoretical effect) occurs when ED50mix = 

ED50add and a sub-additive effect (attenuated effect) occurs when ED50mix > ED50add. 

 

B.  Synthesis 

  

Reactions were monitored by thin layer chromatography (tlc) on silica gel GHLF 

plates (250 μ, 2.5 x 10 cm, Analtech Inc.).  Some compounds were purified via column 

chromatography (silica gel 62, 60-200 mesh, Sigma-Aldrich) or flash chromatography 

(CombiFlash Companion/TS, Teledyne Isco Inc.).  All solid products were characterized 

by melting point on a Thomas-Hoover mp apparatus (and are uncorrected).  1H NMR 

spectra were obtained on either a Varian 300 MHz spectrometer or a Bruker 400 MHz 

spectrometer with tetramethylsilane as internal standard.  Nicolet Avatar 360 FT-IR or 

Nicolet 52DX FT-IR spectrophotometers were used to obtain IR spectra for all 

compounds.  Combustion analysis of carbon, hydrogen, and nitrogen was conducted by 

Atlantic Microlab Inc. (Norcross, GA) on all unknown target compounds.  Calculated 

values were +/- 0.4 % of the theoretical values. 

 

m-Chlorophenylbiguanide Hydrochloride (20).  Compound 20 was prepared 

according to a literature procedure for a similar compound.179  Compound 41 (6.83 g, 

41.64 mmol) was added to a stirred mixture of cyanoguanidine (3.50 g, 41.64 mmol) in 

H2O (10 mL) and heated at reflux for 4 h.  The reaction mixture was allowed to cool to 

10 C for 24 h.  The precipitated salt was collected by filtration, washed with Et2O (6 x 5 
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mL), and recrystallized from H2O (2 x) to afford 4.46 g (22%) of 20 as white crystals: mp 

195.5-196.5 C (lit.181 mp 197-198 C); 1H NMR (DMSO-d6) δ 7.00-7.15 (m, 3H, ArH 

and NH, D2O ex), 7.22-7.30 (m, 2H, ArH and NH, D2O ex), 7.32 (t, 1H, ArH), 7.44 (br s, 

3H, NH, D2O ex), 7.59 (s, 1H, ArH), 9.92 (br s, 1H, NH+, D2O ex); IR (diamond, cm-1) 

3303, 3129, 2962, 1629, 1596. 

 

2-Amino-7-chloroquinoline Hydrochloride (28).  Compound 28 was prepared 

according to a literature procedure for a similar compound.224  A solution of 45 (1.54 g, 

7.40 mmol) and SnCl2·2H2O (16.66 g, 7.40 mmol) in absolute EtOH (100 mL) was 

heated at reflux for 2.5 h.  The reaction mixture was allowed to cool to room 

temperature and poured into ice-water (75 mL).  The solution was made slightly basic 

(pH ≈ 8-9) by the addition of saturated NaHCO3 solution.  Solid NaCl (≈ 2-3 g) was 

added to the solution, and the solution extracted with EtOAc (5 x 200 mL).  The 

combined organic extract was dried (Na2SO4) and the solvent was removed under 

reduced pressure.  The mixture of products (Rf = 0.5 and 0.9; CH2Cl2/MeOH/NH4OH; 

9:1:0.1) was purified by column chromatography (silica gel; CH2Cl2/MeOH/NH4OH; 

9:1:0.1) to afford the free base (Rf = 0.5) of 28 as an off-white solid (0.20 g; 15%): mp 

237-240 °C; 1H NMR (DMSO-d6) δ 7.11 (d, 1H, ArH), 7.40 (dd, 1H, ArH), 7.51 (br s, 2H, 

NH2, D2O ex); IR (diamond, cm-1) 3300, 3075, 2915, 1645, 1608.   

A saturated solution of HCl (g)/Et2O was added to a methanolic solution of the above 

free base (0.15 g).  The resulting salt was collected via filtration and purified by 

recrystallization from EtOH/Et2O to yield 0.08 g (42%) of 28 as a white solid: mp 268-

270 °C; 1H NMR (DMSO-d6) δ 3.44 (br s, 3H, NH3
+, D2O ex), 7.27 (d, 1H, ArH), 7.62 (d, 
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1H, ArH), 8.00 (s, 1H, ArH), 8.04 (d, 1H, ArH), 8.30 (d, 1H, ArH), 9.35 (br s, 1H, NH+, 

D2O ex); IR (diamond, cm-1) 3263, 3069, 1649. Anal. Calcd (C9H7N2Cl·1.5 HCl) C, 

46.33; H, 3.67; N, 12.01. Found: C, 46.67; H, 3.47; N, 11.99. 

 

3-Amino-6-chloroisoquinoline (29).  Compound 29 was prepared according to a 

literature procedure for a similar compound.194  A 2.5 M solution of n-BuLi in hexanes 

(3.7 mL, 9.32 mmol) was added to a stirred solution of 53 (2.0 g, 7.77 mmol) in 

anhydrous THF (50 mL) at -70 °C under a N2 atmosphere and allowed to stir for 30 min.  

The reaction was quenched with absolute EtOH (50 mL) and then allowed to warm to 

room temperature.  The solvent was removed under reduced pressure and the resulting 

residue was dissolved in CH2Cl2 (100 mL).  The solution was washed successively with 

H2O (100 mL) and saturated NH4Cl solution (100 mL).  The organic extract was dried 

(Na2SO4) and concentrated under reduced pressure.  The crude product was purified 

via column chromatography (silica gel; 1st column: CH2Cl2/MeOH; 40:1 to 20:1; 2nd 

column: hexanes/EtOAc = 10:1) and then subsequently recrystallized from benzene to 

yield 74 mg of 29 (5%) as a yellow solid: mp 228-230 °C (dec.); 1H NMR (CDCl3) δ 4.53 

(br s, 2H, NH2), 6.65 (s, 1H, ArH), 7.18-7.21 (dd, 1H, ArH), 7.53 (s, 1H, ArH), 7.72-7.74 

(d, 1H, ArH), 8.84 (s, 1H, ArH); IR (diamond, cm-1) 3428, 3300, 3159, 1647; Anal. Calcd 

(C9H7N2Cl·0.125 CH2Cl2) C, 57.92; H, 3.86; N, 14.80, Found: C, 58.12; H, 3.87; N, 

14.50. 

 

2-Amino-7-chloronaphthalene Hydrochloride (30).  Absolute EtOH (5 mL) and 

platinum oxide (2 mg, 5% w/w) were added to 60 (0.03 g, 0.17 mmol) and the mixture 
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was allowed to stir at room temperature under a N2 atmosphere for 15 min.  A H2 

balloon was added and the reaction mixture was allowed to stir for 6.5 h.  The reaction 

mixture was filtered over Celite and the solid material was washed with absolute EtOH 

(35 mL).  The filtrate was evaporated under reduced pressure and the resulting beige 

solid was dried under reduced pressure for 5 h to afford the crude free base of 30 (0.02 

g).  Hydrogen chloride gas was bubbled slowly through an ethanolic solution (≈3 mL) of 

the crude free base for 10 min at 0 °C (ice-bath).  The solvent was removed under 

reduced pressure and the crude product as a hydrochloride salt was purified via 

recrystallization from acetone to yield 0.01 g (34%) product as a brown solid: mp 262-

264 °C (lit.205 mp 261-263 °C). 

 

2-Amino-7-chlorotetralin Hydrochloride (33).  Compound 33 was prepared according 

to a literature procedure for a similar compound.206  Sodium cyanoborohydride (0.08 g, 

1.33 mmol) was added to a solution of 63 (0.20 g, 1.11 mmol) and NH4OAc (0.85 g, 

11.07 mmol) in MeOH (15 mL) at room temperature.  The resulting yellow/green 

solution was allowed to stir for 23 h.  The reaction mixture was acidified with 10% HCl to 

pH ≈ 2, concentrated under reduced pressure, and then extracted with CH2Cl2 (2 x 75 

mL).  The aqueous portion was basified with 6 N NaOH to pH ≈ 10 and extracted with 

CH2Cl2 (3 x 75 mL).  The combined organic extract was dried (Na2SO4), concentrated, 

and the product was dried under reduced pressure for 2 h to yield 0.03 g (16%) of the 

free base of 33 as a yellow/green oil: 1H NMR (CDCl3) δ 1.50-1.56 (m, 1H, CH), 1.89-

1.94 (m, 1H, CH), 2.42-2.49 (m, 1H, CH), 2.67-2.91 (m, 3H, CH), 3.07-3.14 (m, 1H, 

CH), 6.92-7.00 (m, 3H, ArH); IR (diamond, cm-1) 2920, 2849, 2658, 1573. 
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The free base was converted to the HCl salt by dissolving the oil in absolute EtOH (8 

mL); a saturated solution of HCl (g) in EtOH (4 mL) was added at 0 °C (ice-bath) and 

the mixture was allowed to stir for 30 min.  The reaction mixture was concentrated 

under reduced pressure and washed with anhydrous Et2O (10 mL)  The resulting solid 

was recrystallized from EtOH/Et2O to yield 0.02 g (50%) of 33 as a pink solid: mp >260 

°C; 1H NMR (DMSO-d6) δ 1.68-1.78 (m, 1H, CH), 2.09-2.13 (m, 1H, CH), 2.75-2.85 (m, 

3H, CH), 3.06-3.11 (m ,1H, CH), 3.43-3.46 (m, 1H, CH), 7.13-7.26 (m, 3H, ArH), 8.12 

(br s, 3H, NH3
+, D2O ex); IR (diamond, cm-1) 2920, 2719, 2627, 2556, 2037, 1621, 1599. 

Anal. Calcd (C10H12NCl·HCl·0.25 H2O) C, 53.95; H, 6.11; N, 6.29. Found: C, 54.26; H, 

5.71; N, 6.08. 

 

2-Amino-5,7-dichloro-3,4-dihydroquinazoline Hydrochloride (38).  Compound 38 

was prepared according to a literature procedure for a similar compound.210  A solution 

of BH3·THF complex (2.9 mL, 1 M) was added in a dropwise manner to 2-amino-5,7-

dichloroquinazolin-4(3H)-one (68) under a N2 atmosphere.  The green reaction mixture 

was heated at reflux for 1 h.  A solution of 6 N HCl (1 mL) was added in a dropwise 

manner at 0 °C (ice-bath) to hydrolyze the borate complex and excess reagent.  The 

dark-blue suspension was basified with 6 N NaOH (1.5 mL).  The reaction mixture was 

concentrated under reduced pressure and the resulting residue was extracted with hot 

CHCl3 (2 x 15 mL).  Crude product precipitated when the combined organic extract 

cooled to room temperature.  The combined organic extract was filtered.  The filtrate 

was evaporated to dryness and the product was recrystallized from CHCl3.  The 

combined solid was dried in an Abderhalden over toluene heated at reflux for 8 h to 
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yield 0.09 g (59%) of the free base of 38 as an off-white solid: mp 207-208 °C; 1H NMR 

(DMSO-d6) δ 4.34 (s, 2H, CH2), 5.87 (br s, 2H, NH2, D2O ex), 6.41 (br s, 1H, NH, D2O 

ex), 6.48 (d, 1H, ArH), 6.78 (d, 1H, ArH); IR (diamond, cm-1) 3466, 3309, 3162, 1648, 

1607. 

2-Amino-5,7-dichloro-3,4-dihydroquinazoline (0.04 g, 0.20 mmol) was dissolved in 

absolute EtOH (5 mL) at 0 °C (ice-bath).  A saturated solution of HCl (g) in EtOH (5 mL) 

was added and allowed to stir for 30 min.  The solvent was removed under reduced 

pressure and the resulting off-white residue was recrystallized from absolute EtOH, 

washed with cold anhydrous Et2O, and dried in an Abderhalden over toluene heated at 

reflux for 4 d to yield 0.04 g (68%) of 38 as an off-white solid: mp 272-273 °C; 1H NMR 

(DMSO-d6) δ 4.48 (s, 2H, CH2), 7.03 (d, 1H, ArH), 7.36 (d, 1H, ArH), 7.85 (br s, 2H, 

NH2, D2O ex), 8.69 (br s, 1H, NH, D2O ex), 11.22 (br s, 1H, NH+, D2O ex); IR (diamond,   

cm-1) 3251, 3026, 2972, 2915, 2837, 1662, 1618. Anal. Calcd (C8H7Cl2N3 HCl·0.25 

EtOH·0.25 H2O) C, 38.02; H, 3.75; N, 15.65. Found: C, 38.07; H, 3.76; N, 15.57.  

 

2-Amino-3,4-dihydroquinazoline Hydrochloride (39).  Compound 39 was prepared 

according to a literature procedure for a similar compound.210  A solution of BH3·THF 

complex (12 mL, 1 M) was added in a dropwise manner to a solution of 70 (0.50 g, 3.10 

mmol) in anhydrous THF (6 mL) under a N2 atmosphere at 0 °C (ice-bath).  The 

reaction mixture was heated at reflux for 5 h and then allowed to stir at room 

temperature for 72 h.  A solution of 6 N HCl (10 mL) was added in a dropwise manner at 

0 °C (ice-bath) to hydrolyze the borate complex and excess reagent.  The reaction 

mixture was heated at reflux without a condenser to remove the solvent.  The 
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suspension was basified with 15% NaOH and extracted with hot CHCl3 (25 mL).  The 

product precipitated when the combined organic extract cooled to room temperature.  

The suspension was filtered and the solid was dried in a dessicator over NaOH pellets 

to yield 0.23 g (49%) of the free base of 39 as an off-white solid: mp 228 °C (lit.211 mp 

214-216 °C); 1H NMR (DMSO-d6) δ 4.27 (s, 2H, CH2), 6.51 (d, 1H, ArH), 6.63 (t, 1H, 

ArH), 6.79 (d, 1H, ArH), 6.93 (t, 1H, ArH); IR (diamond, cm-1) 3390, 3307, 3108, 2819, 

1653. 

2-Amino-3,4-dihydroquinazoline (0.10 g, 0.07 mmol) was dissolved in absolute EtOH (5 

mL) and allowed to stir at 0 °C (ice-water).  A saturated solution of HCl (g) in absolute 

EtOH (5 mL) was added and the reaction mixture was allowed to stir for 30 min.  The 

solvent was removed under reduced pressure and the resulting off-white residue was 

dissolved in hot absolute EtOH.  The suspension was filtered and the filtrate was 

concentrated under reduced pressure.  The residue was recrystallized from absolute 

EtOH and then dried in an Abderhalden over toluene heated at reflux for 12 h to yield 

0.09 g (74%) of 39 as an off-white solid: mp 158-160 °C (lit.210 ·HI mp 199-200 °C); 1H 

NMR (DMSO-d6) δ 4.49 (s, 2H, CH2), 6.97 (d, 1H, ArH), 7.09 (t, 1H, ArH), 7.18 (d, 1H, 

ArH), 7.26 (t, 1H, ArH), 7.63 (br s, 2H, NH2, D2O ex), 8.51 (br s, 1H, NH, D2O ex), 10.83 

(br s, 1H, NH+, D2O ex); IR (diamond, cm-1) 3261, 3088, 2963, 2870, 1671, 1626. Anal. 

Calcd (C8H9N3·HCl·0.25 EtOH·0.25 H2O) C, 51.13; H, 6.06; N, 21.05. Found: C, 51.23; 

H, 5.66; N, 20.92. 

 

meta-Chloroaniline Hydrochloride (41).  A 35 M HCl/Et2O solution (22.5 mL, 78.75 

mmol) was added in a dropwise manner to a solution of m-chloroaniline (40; 10.00 g, 
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78.39 mmol) in absolute EtOH (100 mL) at -10 C.  The precipitated HCl salt was 

collected by filtration, recrystallized three times from acetone, and dried (KOH) to yield 

3.59 g (28%) of 41 as a white powder: mp 218-219 °C (lit.180 mp 221.5-222.5 °C). 

 

[2-(4-Chloro-2-nitrophenyl)vinyl]dimethylamine (43).  Compound 43 was prepared 

according to a literature procedure for a similar compound.225  Dimethylformamide 

dimethylacetal (11.6 mL, 87 mmol) and pyrrolidine (3.6 mL, 44 mmol) were added to a 

solution of 4-chloro-2-nitrotoluene (42; 5.00 g, 29 mmol) in DMF (25 mL) at 110 °C 

under a N2 atmosphere.  The reaction mixture was allowed to stir for 1 h, diluted with 

Et2O (200 mL), and washed with H2O (150 mL).  Solid NaCl (≈ 3-4 g) was added to the 

suspension and the organic portion was dried (MgSO4).  The solvent was removed 

under reduced pressure to afford 7.60 g (100%) of 43 as a dark-violet crude substance: 

mp 43-45 ºC (lit.226 mp 44-46 °C); 1H NMR (CDCl3) δ 2.92 (s, 6H, CH3), 5.82 (d, 1H, 

CH), 6.94 (d, 1H, CH), 7.21-7.29 (m, 1H, ArH), 7.38 (d, 1H, ArH), 7.85 (s, 1H, ArH); IR 

(diamond, cm-1) 2976, 2930, 2853, 1691, 1596. 

 

4-Chloro-2-nitrobenzaldehyde (44). Compound 44 was prepared according to a 

literature procedure for a similar compound.227  Compound 43 (0.64 g, 2.80 mmol) in 

DMF (2.5 mL) was added in a dropwise manner to a solution of NaIO4 (1.80 g, 8.50 

mmol) in H2O (5 mL) at room temperature.  The reaction mixture was allowed to stir for 

1.5 h.  The crude reaction mixture was filtered and the solid was washed with toluene 

(50 mL).  The organic portion of the filtrate was washed with H2O (3 x 25 mL) and 

concentrated under reduced pressure.  The oily residue was purified by column 
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chromatography (silica gel; hexanes/EtOAc; 5:1) to afford 0.32 g (61%) of 44 as a pale-

yellow solid: mp 66-68 ºC (lit.228 mp 67-68 °C, Et2O); 1H NMR (CDCl3) δ 7.76 (dd, 1H, 

ArH), 7.94 (d, 1H, ArH), 8.10 (s, 1H, ArH), 10.39 (s, 1H, CHO); IR (diamond, cm-1) 3368, 

3087, 2926, 1691, 1597. 

 

3-(4-Chloro-2-nitrophenyl)acrylonitrile (45).  Compound 45 was prepared according 

to a literature procedure for a similar compound.229  Sodium hydride (0.55 g, 13.80 

mmol) was added portionwise to a stirred solution of diethyl cyanomethylphosphonate 

(2.45 g, 13.80 mmol) in anhydrous DMF (100 mL) at 0 °C (ice-bath).  A solution of 44 

(2.57 g, 13.80 mmol) in anhydrous DMF (25 mL) was added to the reaction mixture in a 

dropwise manner (over 10 min).  After another 5 min, the reaction mixture was poured 

into ice-water and extracted with Et2O (100 mL).  The organic portion was dried 

(MgSO4) and concentrated under reduced pressure.  The residue was purified by 

column chromatography (silica gel; hexanes/EtOAc; 1:1) to afford 1.55 g (54%) of 45 as 

a dark-purple oil: 1H NMR (CDCl3) δ 5.73 (d, 1H, CH), 5.85 (d, 1H, CH), 7.51-8.21 (m, 

3H, ArH); IR (nujol, cm-1) 2958, 2905, 2844, 2344, 2215, 1514. 

 

(E)-3-(2-Amino-4-chlorophenyl)acrylonitrile (46).  The second product from the 

previous reaction was isolated by column chromatography (silica gel; 

CH2Cl2/MeOH/NH4OH; 9:1:0.1) and recrystallized from benzene to afford the free base 

(Rf = 0.9) of 46 as a light-brown solid (0.33 g, 25%): mp 159-160 °C; 1H NMR (DMSO-

d6) δ 6.03 (br s, 2H, NH2, D2O ex), 6.18 (d, 1H, CH), 6.55 (d, 1H, ArH), 6.73 (d, 1H, CH), 
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7.44 (d, 1H, ArH), 7.76 (d, 1H, ArH); IR (diamond, cm-1) 3461, 3374, 3230, 3057, 2214, 

1635, 1598. 

 

7-Chloro-2-acetamidoquinoline (49).  Compound 49 was prepared according to a 

literature procedure for a similar compound.230  Acetic acid (0.1 mL, 1.70 mmol ) was 

added in a dropwise manner to acetic anhydride (0.14 mL, 1.51 mmol) at 0 °C (ice-bath) 

and allowed to stir for 2 h at room temperature.  The reaction mixture was added to a 

solution of 28 (free base; 135 mg, 0.76 mmol) in anhydrous THF (25 mL) under a N2 

atmosphere and allowed to stir for 30 min.  The solvent was removed under reduced 

pressure.  Methanol (20 mL) was added, the reaction mixture was allowed to stir for 30 

min and the solvent was removed under reduced pressure.  Diethyl ether (20 mL) was 

added, the reaction mixture was allowed to stir for 1 h and subsequently filtered.  The 

precipitate was dried in an Abderhalden over toluene heated at reflux for 12 h to yield 

120 mg (72%) of 49 as an off-white solid: mp 209-210 °C; 1H NMR (CDCl3) δ 2.31 (s, 

3H, CH3), 7.44-7.47 (dd, 1H, ArH), 7.69-7.72 (m, 2H, ArH), 8.53-8.55 (d, 1H, ArH), 8.59-

8.60 (d, 1H, ArH), 10.24 (br s, 1H, NH); IR (diamond, cm-1) 3138, 1696, 1607. 

 

4-Chloro-2-cyanomethylbenzonitrile (52).  Compound 52 was prepared according to 

a literature procedure for a similar compound.199  Ethyl cyanoacetate (6.81 mL, 64 

mmol) was added over 10 min to a suspension of NaH (2.56 g, 64 mmol, 60% 

dispersion in mineral oil) in DMSO (25 mL) at 0 °C (ice-bath).  The yellow reaction 

mixture was allowed to stir at room temperature for 30 min.  Compound 51 (5.0 g, 32 

mmol) was added as a solution in DMSO (25 mL) and the resulting peach-colored 
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solution was allowed to stir at 90 °C for 9 h.  Water (25 mL) was added and the reaction 

mixture was heated at reflux for 8 h.  The bright-yellow reaction mixture was allowed to 

cool to 5 °C over 30 min.  A 0.15 N HCl solution (20 mL) was added and the reaction 

mixture was allowed to stir for an additional 30 min.  The resulting precipitate was 

filtered, washed successively with H2O (25 mL), 0.1 M NaOH solution (2 x 75 mL) and 

brine (50 mL), and dried (Na2SO4) to yield 4.70 g of 52 (83%) as a pale-yellow powder: 

mp 116-117 °C (lit.191 mp 119-120 °C); 1H NMR (CDCl3) δ 3.92 (s, 2H, CH2), 7.40-7.42 

(dd, 1H, ArH), 7.57-7.59 (d, 1H, ArH), 7.61-7.62 (d, 1H, ArH); IR (diamond, cm-1) 3083, 

2991, 2226, 1592. 

 

3-Amino-1-bromo-6-chloroisoquinoline (53).  Compound 53 was prepared according 

to a literature procedure for a similar compound.231  Compound 52 (4.7 g, 27 mmol) and 

a solution of HBr (g) in AcOH (25 mL, 30%) were allowed to stir for 1 h at room 

temperature.  Diethyl ether (50 mL) was added, and the reaction mixture was allowed to 

stir for 30 min.  The resulting yellow/orange precipitate was filtered, washed with Et2O (2 

x 25 mL), suspended in EtOAc (150 mL), and neutralized with saturated aq NaHCO3 

solution (100 mL).  The organic extract was dried (Na2SO4) and concentrated under 

reduced pressure.  The crude product was washed with cold Et2O (2 x 50 mL) to yield 

2.01 g of 53 (29%) as an orange solid: mp 175-177 °C; 1H NMR (CDCl3) δ 7.39-7.42 

(dd, 1H, ArH), 7.72-7.73 (d, 1H, ArH), 7.87 (br s, 2H, NH2), 8.03-8.06 (d, 1H, ArH), 8.36 

(s, 1H, ArH); IR (diamond, cm-1) 3222, 3183, 3045, 1664, 1552. 
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3,6-Dinitro-1,8-naphthalic anhydride (57).  Compound 57 was prepared according to 

a literature procedure.195  1,8-Naphthalic anhydride (56; 10.0 g, 50.0 mmol) was added 

to concentrated H2SO4 (40.4 mL) and the resulting green solution was cooled to 5 °C.  

While avoiding a rise in temperature above 20 °C, concentrated HNO3 (9.3 mL) was 

added in a dropwise manner to the solution.  The yellow solution was heated to 60 °C 

for 1.5 h and then allowed to cool to room temperature.  The reaction mixture was 

added to ice-water (100 mL) in a dropwise manner and the resulting precipitate was 

filtered and washed with H2O (3 x 75 mL).  The crude product was recrystallized from 

glacial AcOH, washed with H2O (3 x 50 mL), and dried in an Abderhalden over toluene 

heated at reflux for 12 h to yield 8.7 g (60%) of 57 as a yellow solid: mp 199-200 °C 

(lit.195 mp 208-210 °C, glacial AcOH); 1H NMR (CDCl3) δ 9.50 (d, 2H, ArH), 9.56 (d, 2H, 

ArH); IR (diamond, cm-1) 3071, 1782, 1741, 1597. 

 

2,7-Dinitronaphthalene (58). Compound 58 was prepared according to a literature 

procedure.196  Compound 57 (7.6 g, 26.37 mmol) was added over 4 min to a 

suspension of copper powder (1.9 g) in boiling quinoline (previously distilled, 15.6 mL) 

and then more copper powder (1.9 g) was added.  After 1 h, the reaction mixture was 

allowed to cool to room temperature and Et2O (250 mL) was added.  The resulting dark-

brown reaction mixture was filtered and the filtrate was washed with H2O (2 x 100 mL).  

The organic extract was washed successively with 15% HCl solution (2 x 75 mL), cold 

saturated NaHCO3 solution (100 mL), and H2O (100 mL).  The organic portion was dried 

(MgSO4) and the solvent was removed under reduced pressure.  The crude product 

was purified via column chromatography (silica gel; hexanes/EtOAc; 2:1 to 1:1) and 
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dried in an Abderhalden over toluene heated at reflux for 5 h to yield 0.8 g (13%) of 58 

as an orange solid: mp 225-228 °C (lit.196 mp 234 °C, glacial AcOH); 1H NMR (CDCl3) δ 

8.17 (d, 2H, ArH), 8.50 (dd, 2H, ArH), 9.04 (s, 2H, ArH); IR (diamond, cm-1) 3081, 1628, 

1514. 

 

2-Amino-7-nitronaphthalene (59).  Compound 59 was prepared according to a 

literature procedure.197  A solution of NaSH (0.07 g, 1.27 mmol) in MeOH (2 mL) was 

added over 15 min to a solution of 58 (0.19 g, 0.85 mmol) in MeOH (3 mL) and H2O (6 

mL) heated at reflux.  The dark-purple reaction mixture was heated for 3 h and then 

poured into ice-water (50 mL).  The resulting orange precipitate was filtered and washed 

with boiling 10% aq HCl solution (25 mL).  The filtrate was basified with 10% NaOH 

solution and extracted with EtOAc (50 mL).  The organic extract was dried (MgSO4) and 

the solvent was removed under reduced pressure to afford 59 (0.10 g, 64%) as an 

orange solid: mp 159-162 °C (lit.196 mp 184.5 °C, EtOH); 1H NMR (CDCl3) δ 4.14 (br s, 

2H, NH2, D2O ex), 7.13-7.17 (m, 2H, ArH), 7.76-7.83 (m, 2H, ArH), 7.99 (dd, 1H, ArH), 

8.56 (d, 1H, ArH); IR (diamond, cm-1) 3486, 3383, 2920, 1631, 1518. 

 

7-Chloro-2-nitronaphthalene (60).  Compound 60 was prepared according to a 

literature procedure for a similar compound.198  Acetic acid (0.4 mL) and 59 (0.09 g, 

0.48 mmol) were added to a stirred solution of NaNO2 (0.07 g, 1.06 mmol) in 

concentrated H2SO4 (0.4 mL) at 0 °C (ice-bath).  The resulting solution was added in a 

dropwise manner to a suspension of CuCl (0.17 g, 1.72 mmol) in concentrated HCl 

solution (0.7 mL) at 0 °C (ice-bath) and the mixture was allowed to stir for 2 h.  The 
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black reaction mixture was poured into ice-water (50 mL) and the aqueous layer was 

extracted with CH2Cl2 (50 mL).  The organic extract was dried (Na2SO4) and the solvent 

was removed under reduced pressure.  The crude product was purified via column 

chromatography (silica gel; hexanes/EtOAc; 20:1) to yield 0.02 g of 60 (19%) as a 

yellow needle-like solid: mp 137-139 °C (lit.229 mp 139-140 °C, EtOH); 1H NMR (CDCl3) 

δ 7.65-7.74 (m, 2H, ArH), 7.92-8.06 (m, 2H, ArH), 8.28 (dd, 1H, ArH), 8.80 (dd, 1H, 

ArH); IR (diamond, cm-1) 2917, 2845, 1731, 1586, 1514. 

 

3-Chlorophenylacetyl chloride (62).  Compound 62 was prepared according to a 

literature procedure for a similar compound.203  Thionyl chloride (3.2 mL, 43.96 mmol) 

was added to a stirred solution of 3-chlorophenylacetic acid (61; 5.00 g, 29.31 mmol) in 

CH2Cl2 (12 mL) at room temperature.  The yellow, translucent reaction mixture was 

heated at reflux for 24 h and then allowed to cool to room temperature.  The orange 

reaction mixture was concentrated under reduced pressure.  The product was purified 

via Kuger-rohr distillation (0.5 Torr, bp 97-103 °C; lit.233 1 Torr, bp 77.5-78 °C) and dried 

under reduced pressure for 2 h to yield 3.69 g (67%) of 62 as a yellow liquid: 1H NMR 

(CDCl3) δ 4.05 (s, 2H, CH2), 7.08-7.10 (m, 1H, ArH), 7.19-7.25 (m, 3H, ArH); IR 

(diamond, cm-1) 3358, 3065, 2912, 1790, 1599. 

 

7-Chloro-β-tetralone (63) and 5-Chloro-β-tetralone (64).  Compounds 63 and 64 

were prepared according to a literature procedure.204  Compound 62 (2.49 g, 13.17 

mmol) was dissolved in CH2Cl2 (25 mL) and added via an addition funnel over 20 min to 

a white suspension of AlCl3 (previously sublimed; 3.86 g, 28.98 mmol) in CH2Cl2 (125 
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mL) stirring at -10 to 0 °C (cooling bath with CO2).  Ethylene gas was bubbled into the 

yellow mixture for 30 min, causing the temperature to rise to 5 °C, and then drop back 

down to -5 °C.  Ethylene gas was allowed to bubble slowly through the mixture for an 

additional 1.75 h.  Ice-water (100 mL) was added to the pale-yellow reaction mixture.  

The organic layer was separated and washed successively with 10% HCl (100 mL), 

saturated aq Na2CO3 (100 mL), and then dried (Na2SO4).  The solvent was removed 

under reduced pressure and the product was isolated via column chromatography 

(silica gel; hexanes/EtOAc; 9:1) to yield 0.36 g (15%) of 64 as a yellow oil and 0.24 g 

(10%) of 63 as a pale-yellow solid: mp 37-38 °C (lit.234 mp 38-39 °C).  Both products 

were dried under reduced pressure for 1 h and stored at -80 °C.  63: 1H NMR (CDCl3) δ 

2.48 (t, 2H, CH2), 2.97 (t, 2H, CH2), 3.49 (s, 2H, CH2), 7.10 (m, 3H, ArH); IR (diamond, 

cm-1) 3022, 2964, 2763, 1686, 1598.  64: 1H NMR (CDCl3) δ 2.50 (t, 2H, CH2), 3.17 (t, 

2H, CH2), 3.53 (s, 2H, CH2), 6.96 (d, 1H, ArH), 7.09 (t, 1H, ArH), 7.23 (d, 1H, ArH); IR 

(diamond, cm-1) 3064, 2916, 2849, 1817, 1715. 

 

2-Amino-5-chlorotetralin Hydrochloride (65).  Compound 65 was prepared according 

to a literature procedure for a similar compound.206  Sodium cyanoborohydride (0.04 g; 

0.62 mmol) was added to a solution of 64 (0.09 g; 0.52 mmol) and NH4OAc (0.40 g; 

5.20 mmol) in MeOH (10 mL) at room temperature.  The resulting pale-yellow/brown 

solution was allowed to stir for 18 h.  The reaction mixture was acidified with 10% HCl 

solution (pH ≈ 2.0), concentrated under reduced pressure, and then extracted with 

CH2Cl2 (2 x 50 mL).  The aqueous portion was basified with 6 N NaOH (pH ≈ 10) and 

extracted with CH2Cl2 (3 x 50 mL).  The combined organic extract was dried (Na2SO4) 
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and concentrated under reduced pressure.  The resulting yellow oil was dried under 

reduced pressure for 2 h to yield 0.03 g (32%) of the free base of 65: 1H NMR (CDCl3) δ 

1.52-1.59 (m, 1H, CH), 1.95-2.01 (m, 1H, CH), 2.45-2.54 (m, 1H, CH), 2.63-2.71 (m, 1H, 

CH), 2.89-2.97 (m, 2H, CH), 3.07-3.14 (m, 1H, CH), 6.90-7.13 (m, 3H, ArH); IR 

(diamond, cm-1) 3340, 3276, 3060, 2927, 2855, 1568. 

The free base was converted to the HCl salt by dissolving the oil in absolute EtOH (5 

mL).  A saturated solution of HCl (g) in EtOH (4 mL) was added at 0 °C (ice-bath) and 

allowed to stir for 30 min at 0 °C (ice-bath).  The reaction mixture was concentrated 

under reduced pressure and washed with Et2O (10 mL).  The resulting crude solid was 

recrystallized from EtOH/Et2O to yield 0.02 g (18%) of 65 as a pink solid: mp 280-282 

°C (dec); 1H NMR (DMSO-d6) δ 1.61-1.71 (m, 1H, CH), 2.02-2.05 (m, 1H, CH), 2.67-

2.78 (m, 3H, CH), 2.99-3.04 (m ,1H, CH), 3.34-3.38 (m, 1H, CH), 7.06-7.18 (m, 3H, 

ArH), 8.04 (br s, 3H, NH3
+, D2O ex); IR (diamond, cm-1) 2921, 2718, 2627, 2556, 2037, 

1620, 1599. Anal. Calcd (C10H12NCl·HCl) C, 55.06; H, 6.01; N, 6.42. Found: C, 55.03; 

H, 5.95; N, 6.32. 

 

4,6-Dichloroisatoic anhydride (67).   

Method A.  Compound 67 was prepared according to a literature procedure.208  

Chromium trioxide (0.33 g, 3.30 mmol) was added portionwise at 90 °C to a stirred 

suspension of 4,6-dichloroisatin (66; 0.72 g, 3.31 mmol) in glacial AcOH (4 mL) and 

acetic anhydride (4 mL).  The reaction mixture was allowed to stir at 90 °C for 1.5 h.  

Water (20 mL) was added to the green reaction mixture and the crude product 

precipitated.  The crude solid was collected by filtration, washed with H2O (15 mL), and 
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dried under reduced pressure for 1 h to yield 0.55 g of crude product (and starting 

material) as a yellow solid.  It was determined by 1H NMR that the crude solid was a 

mixture of 4,6-dichloroisatin (66; 45%) and 67 (55%).  This crude product was used in 

the next step without purification. 

 

Method B.  Compound 67 was prepared according to a literature procedure for a similar 

compound.232  A suspension of 4,6-dichloroisatin (66; 0.50 g, 2.32 mmol) in glacial 

AcOH (2.5 mL) and concentrated H2SO4 (2 drops) was heated to 30 °C.  The reaction 

mixture was allowed to stir for 15 min and then an aqueous solution of H2O2 (0.3 mL; 

30%) was added in a dropwise manner.  The reaction mixture was slowly heated to 65 

°C and after 5 h the reaction mixture was allowed to cool to room temperature.  The 

resulting precipitate was collected by filtration, washed with H2O (3 x 5 mL), and dried 

under reduced pressure for 8 h to yield 0.32 g of crude product (and starting material) 

as a yellow solid.  It was determined by 1H NMR that the crude solid was a mixture of 

4,6-dichloroisatin (66; 56%) and 67 (44%).  This crude product was used in the next 

step without purification. 

 

2-Amino-5,7-dichloroquinazolin-4(3H)-one (68).  Compound 68 was prepared 

according to a literature procedure for a similar compound.209  S-Methylthioisourea 

sulfate (0.30 g, 1.07 mmol) and Na2CO3 (0.11 g, 1.07 mmol) were added to a solution of 

4,6-dichloroisatoic anhydride (67; 0.25 g, 1.07 mmol) and 4,6-dichloroisatin (66; 0.30 g, 

1.37 mmol) dissolved in aq MeCN (11 mL, 80%).  The resulting solution was heated at 

reflux for 23 h.  The reaction mixture was allowed to cool to room temperature over a 
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period of 30 min, H2O (20 mL) was added, and the reaction mixture was allowed to stir 

for 2 h.  The reaction mixture was filtered and the precipitate was washed with aq MeCN 

(3 x 15 mL; 80%).  The solid was dried in an Abderhalden over toluene heated at reflux 

for 24 h to yield 0.17 g (70%) of 68 as a beige solid: mp >300 °C; 1H NMR (DMSO-d6) δ 

6.64 (br s, 2H, NH2, D2O ex), 7.13-7.15 (m, 2H, ArH), 11.10 (br s, 1H, NH, D2O ex); IR 

(diamond, cm-1) 3385, 2925, 2257, 2130, 1652. 

To recover the isatin starting material, the filtrate was concentrated under reduced 

pressure, dissolved in EtOAc (100 mL), and washed with 15% HCl solution (50 mL).  

The aqueous layer was basified with 10% NaOH and extracted with EtOAc (2 x 50 mL).  

The combined organic portion was dried (MgSO4) and the solvent was removed under 

reduced pressure. 

 

2-Aminoquinazolin-4(3H)-one (70).  Compound 70 was prepared according to a 

literature procedure for a similar compound.209  S-Methylthioisourea sulfate (5.56 g, 

20.00 mmol) and Na2CO3 (3.20 g, 30.00 mmol) were added to a solution of  isatoic 

anhydride (69; 3.26 g, 20.00 mmol) in aq MeCN (100 mL, 80%) and the resulting dark-

brown solution was heated at reflux for 23 h.  The light-yellow reaction mixture was 

allowed to cool to room temperature over a period of 30 min.  The resulting precipitate 

was collected by filtration and washed successively with aq MeCN (3 x 25 mL; 80%) 

and H2O (75 mL).  The solid was dried under reduced pressure and recrystallized from 

absolute EtOH to yield 1.14 g (35%) of 70 as a white solid: mp >300 °C (lit.214 mp >250 

°C); 1H NMR (DMSO-d6) δ 6.40 (br s, 2H, NH2, D2O ex), 7.10 (t, 1H, ArH), 7.20 (d, 1H, 
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ArH), 7.55 (t, 1H, ArH), 7.88 (d, 1H, ArH), 11.03 (br s, 1H, NH, D2O ex); IR (KBr, cm-1) 

3404, 3144, 3061, 1684, 1656, 1606. 

 

C.  Molecular modeling 

 

All ligands and models were built in Sybyl (verson 8.1; Tripos Associates, St. 

Louis, MO) on a Silicon Graphics workstation and given AM1 charges and geometries 

based on MOPAC.  A conformation search of MD-354 (21), in order to identify the 

lowest-energy conformers, was conducted using Sybyl (Tripos Force Field, AM1).  

In order to generate homology models of the inactive and active state of α2A-, 

α2B- and α2C-ARs, first, a sequence alignment of the α2-ARs and other GPCRs was 

created.  Mimicking Bissantz et al., 214 an alignment profile of several GPCRs including 

the primary sequences of human muscarinic cholinergic M1 (P11229), human 

vasopressin V1a (P37288), human dopamine D3 (P35462), human adrenergic β2 

(P07550), human δ-opioid (P41143) and bovine rhodopsin (P02699), all of which were 

retrieved from the ExPASy Proteomics Server (http://www.expasy.org/) at the Swiss 

Institute of Bioinformatics, was generated and further aligned to the human α2A-AR 

(P08913) sequence using the ClustalX program (BLOSUM matrix series; gap opening: 

15.0).  Two alignments were generated as described above: (1) included amino acid 

residues from the N-terminus to the IL-3 and (2) included amino acid residues from the 

IL-3 to the C-terminus.236  Previously identified highly conserved amino acid residues 

within GPCRs237,238 are aligned and there are no insertions or deletions in the 

transmembrane regions.   
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This alignment was used to generate the model of the α2A-AR based on its 

homology to human β2-AR (chain A of PDB entry = 2RH1; RCSB Protein Data Bank, 

http://www.rcsb.org).  The α2A-AR model was used as a template for α2B- and α2C-ARs, 

which means sequence alignments of α2B-AR and α2A-AR, as well as α2C-AR and α2A-

AR, were first generated followed by mutating amino acid residues in the α2A-AR model 

to mimic the α2B-AR and α2C-AR.  Ligand docking in these models was performed via 

GOLD (Version 4.0; 10 genetic algorithm runs/15 Å sphere around conserved D3.32). 
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